
Notes on nonrelativistic systems

”Box” normalization and discrete wavevectors

So far we have studied systems of infinite size, which makes the wavevectors continuous (see
Ch. 5 in JOA1). Alternatively, it can be convenient to instead consider a system of large but
finite size. We take the system to be the inside of a large box with sides of length Lx, Ly,
and Lz with volume V = LxLyLz. This brings up the question of boundary conditions. As
long as one restricts attention to bulk properties of macroscopically large systems, one can
impose the boundary conditions that are most convenient mathematically, which typically
are periodic boundary conditions (PBC’s). (Of course, if one wanted to study properties of
the system near the boundaries this would not be a valid choice of BC’s.)

Consider nonrelativistic free particles (bosons or fermions). Omitting possible spin degrees
of freedom for now, the eigenfunctions of the free-particle Schrödinger equation only have a
spatial part, which are plane waves labeled by a wavevector k,

φk(r) =
1√
V
eik·r, (1)

(the prefactor 1/
√
V ensures that these wavefunctions are normalized). Imposing PBC’s in

the x direction, we have
φk(r) = φk(r + Lxêx) (2)

which gives k ·Lxêx = 2πnx, where nx is an arbitrary integer. Thus the allowed values of kx
take the form

kx =
2πnx
Lx

. (3)

Similarly, imposing PBC’s in the y and z directions gives

ky =
2πny
Ly

, (4)

kz =
2πnz
Lz

, (5)

with ny and nz arbitrary integers. We see that the allowed k-vectors form a discrete set
rather than a continuum.

Let us now expand the field operator in the complete set of plane waves:

ψ(r) =
1√
V

∑
k

ake
ik·r. (6)

Note that because the allowed k-vectors are discrete, there is a sum instead of an integral
in this expression. For concreteness, let’s assume that the particles created and annihilated
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by the field operators are bosons. Then we have the equal-time commutation relations

[ψ(r), ψ†(r′)] = δ(r − r′), (7)

[ψ(r), ψ(r′)] = [ψ†(r), ψ†(r′)] = 0. (8)

These are satisfied if the a-operators satisfy the equal-time commutation relations

[ak, a
†
k′ ] = δk,k′ , (9)

[ak, ak′ ] = [a†k, a
†
k′ ] = 0, (10)

where

δk,k′ =

{
1 if k = k′,
0 if k 6= k′

(11)

is called the Kronecker delta function. (In contrast, note that the corresponding commutation
relations for continuous k-vectors involved the Dirac delta function δ(k−k′).) For example,
let’s verify this for (7):

[ψ(r), ψ†(r′)] =
1

V

∑
k,k′

eik·r−ik
′·r′ [ak, a

†
k′ ]︸ ︷︷ ︸

δk,k′

=
1

V

∑
k

eik·(r−r
′). (12)

From (3) it follows that adjacent values of kx differ by 2π/Lx ≡ ∆kx. Similarly, ∆ky = 2π/Ly
and ∆kz = 2π/Lz. Thus we can write

[ψ(r), ψ†(r′)] =
∑
k

∆kx∆ky∆kz
(2π)3

eik·(r−r
′) (13)

where we also used V = LxLyLz. We are interested in systems for which Lx, Ly, Lz are each
macroscopically large (and thus so is the volume V ). In this limit ∆kx, ∆ky, and ∆kz → 0,
so we can approximate the sum by an integral:∑

k

∆kx∆ky∆kzf(k)
V→∞→

∫
dkxdkydkzf(k) =

∫
d3kf(k). (14)

Thus we find

[ψ(r), ψ†(r′)] =

∫
d3k

(2π)3
eik·(r−r

′) = δ(r − r′). Q.E.D. (15)

Next, let us express the kinetic energy operator

H0 =

∫
V

d3r
h̄2

2m
∇ψ†(r) · ∇ψ(r) (16)
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in terms of the a-operators. Inserting (6) and its h.c. and applying the ∇’s, we get

H0 =
1

V

h̄2

2m

∫
V

d3r
∑
k,k′

(−ik)e−ik·ra†k · (ik
′)eik

′·rak′

=
h̄2

2m

∑
k,k′

k · k′a†kak′
1

V

∫
V

d3x e−i(k−k
′)·r︸ ︷︷ ︸

δk,k′

=
∑
k

h̄2k2

2m
a†kak. (17)

If the particles have spin, we need to specify the spin state as well to have a full specification of
a single-particle state. Let us consider electrons, which have spin 1/2. Using the eigenstates
of the spin along the z axis, with eigenvalues σ = ±1/2, as our spin basis, the expansion (6)
is generalized to

ψσ(r) =
1√
V

∑
k

akσe
ik·r. (18)

Furthermore, since electrons are fermions, the commutators in (7)-(10) must be replaced by
anticommutators. For example, the equal-time anticommutation relations for the a-operators
creating or annihilating electrons with a definite wavevector and spin projection read

{akσ, a†k′σ′} = δk,k′δσσ′ , (19)

{akσ, ak′σ′} = {a†kσ, a
†
k′σ′} = 0, (20)

Finally, the kinetic energy operator becomes

H0 =
∑
σ

∫
V

d3r
h̄2

2m
∇ψ†σ(r) · ∇ψσ(r) (21)

=
∑
kσ

h̄2k2

2m
a†kσakσ. (22)

Note that by doing an integration by parts and using the PBC’s to get rid of the boundary
terms, (21) can be rewritten as

H0 =
∑
σ

∫
d3r ψ†σ(r)

(
− h̄2

2m
∇2

)
ψσ(r). (23)

Similarly, by removing the spin subscripts and spin summation here one gets the analogous
rewritten version of Eq. (16).

Nonrelativistic systems of many identical material particles

When we motivated the introduction of quantum field theory for relativistic particles earlier
in the course, one of the arguments we made was that in relativistic systems, particles
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can be created or annihilated, making it impossible to describe the system in terms of a
wavefunction Ψ(x1, . . . , xN) of a fixed number N of particles. Thus a different approach
was clearly needed, and this approach, quantum field theory, can be formulated in terms of
creation and annihilation operators. The formalism based on such operators is often called
second quantization.

On the other hand, consider instead a nonrelativistic system of particles, for example
electrons in a solid. As creation/annihilation processes that change their number are absent,
such a system could therefore be described in terms of the standard quantum mechanical
formalism based on (many-particle) wavefunctions. This wavefunction formalism is often
referred to as first quantization, especially when it is compared and contrasted with the
second quantization formalism.2

Let us first discuss the first quantization formalism a bit. A system of N identical particles
can be described by a many-particle (aka many-body) wavefunction Ψ(x1, . . . , xN ; t) which is
symmetric (antisymmetric) under particle interchange if the particles are bosons (fermions):

Ψ(x1, . . . , xi, . . . , xj, . . . , xN ; t) = ±Ψ(x1, . . . , xj, . . . , xi, . . . , xN ; t) (24)

where on the rhs we have interchanged the coordinates of particles i and j. The upper sign
is for bosons, the lower sign for fermions. We emphasize that if the particles have spin the
symbol x includes the spin projection along some axis as well as the position vector of the
particle, i.e. x = (r, σ), so in this case an interchange of coordinates involves interchanging
both the spatial and spin coordinates of two particles. (Also note that unlike the notation
we used earlier especially for relativistic systems, here and in the following we do not include
the time coordinate t as part of the symbol x.) The time-independent Schrödinger equation
is

HΦn(x1, x2, . . . , xN) = EnΦn(x1, x2, . . . , xN) (25)

where Φn and En are eigenfunctions and eigenvalues of the Hamiltonian H, which can be
written

H = H0 +Hint, (26)

where H0 is the noninteracting part of the Hamiltonian and Hint is the interacting part. If
the particles are free, H0 is just the kinetic energy operator,

H0 =
N∑
i=1

(
− h̄2

2m

)
∇2
i . (27)

Otherwise H0 could also include the coupling to an external potential (we’ll come back to
this later). Furthermore, we will assume that the interaction part Hint is a two-particle
interaction, which can be written on the form

Hint =
1

2

N∑
i,j=1

i 6=j

v(xi, xj). (28)

2We won’t go into the reasons behind the names of first and second quantization. We refer to Ch. 2 in
Hatfield’s ”Quantum field theory of point particles and strings” for a nice discussion.
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For example, electrons interact via the (spin-independent) Coulomb interaction given by
v(r, r′) = e2/4πε0|r−r′|. While we could study the system using this first quantization for-
malism based on many-particle wavefunctions and operators on the form (27) and (28), this
formalism is very cumbersome compared to the alternative second quantization formalism,
in which operators are expressed in terms of creation and annihilation operators that create
or annihilate particles in specific single-particle states, and the many-particle basis states
can be expressed in terms of creation operators acting on a ”vacuum” state |0〉 containing
no particles. For example, |Φ〉 = a†ν1a

†
ν2
a†ν3|0〉 is an example of a 3-particle basis state in the

second quantization formalism; here a†ν creates a particle in the single-particle state specified
by the quantum numbers ν.

Using canonical quantization (introduced in JOA, Ch. 5) we have already seen what
the kinetic energy operator H0 looks like in the second quantization formalism; see Eqs.
(16), (17), and (21)-(23). Let us therefore now consider what Hint looks like in the second
quantization formalism. To do this we first go back to Exercise 5.6.3, where we found that
the total number operator (which counts the total number of particles in the system) was
given by

N̂ =

∫
d3x ψ†(x)ψ(x). (29)

It is natural to define the density operator ρ(x) as

N̂ =

∫
d3x ρ(x). (30)

Comparison with Eq. (29) then gives

ρ(x) = ψ†(x)ψ(x) (31)

as the 2nd-quantized representation of the density operator. On the other hand, the 1st-
quantized representation of the density operator is

ρ(x) =
N∑
i=1

δ(x− xi), (32)

as this picks up a nonzero contribution only for those values of x where the particles are,
and furthermore gives the total particle number N when integrated over all x:

∫
d3x ρ(x) =∑N

i=1

∫
d3x δ(x− xi) = N .

Next note that the first-quantized representation of Hint, Eq. (28), can be written

Hint =
1

2

[∫
dx

∫
dx′v(x, x′)ρ(x)ρ(x′)−

∫
dx v(x, x)ρ(x)

]
(33)
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with ρ(x) given by (32). Proof: Inserting (32) gives

1

2

[∫
dx

∫
dx′ v(x, x′)

∑
i

δ(x− xi)
∑
j

δ(x′ − xj)−
∫
dx v(x, x)

∑
i

δ(x− xi)

]

=
1

2

[∑
i

∑
j

v(xi, xj)−
∑
i

v(xi, xi)

]
=

1

2

∑
i,j

i 6=j

v(xi, xj) = Hint. QED. (34)

We can now find the second-quantized representation of (28) by using the second-quantized
representation of ρ(x), Eq. (31), in Eq. (33). This gives

Hint =
1

2

[∫
dx

∫
dx′ v(x, x′)ρ(x)ρ(x′)−

∫
dx v(x, x)ρ(x)

]

=
1

2

∫ dx

∫
dx′ v(x, x′)ψ†(x)ψ(x)ψ†(x′)︸ ︷︷ ︸

rewrite

ψ(x′)−
∫
dx v(x, x)ψ†(x)ψ(x)

 (35)

Now we use that
[ψ(x), ψ†(x′)]r = δ(x− x′) (36)

where we have defined
[A,B]r = AB + rBA (37)

In Eq. (36), r = ±1 for fermionic/bosonic field operators. This gives

ψ(x)ψ†(x′) = −rψ†(x′)ψ(x) + δ(x− x′). (38)

We insert this for the product labeled “rewrite” in (35) and do the x′ integration in the term
with the Dirac delta function. This gives

Hint =
1

2

[
−r

∫
dx

∫
dx′ v(x, x′)ψ†(x)ψ†(x′)ψ(x)ψ(x′)

+

∫
dx v(x, x)ψ†(x)ψ(x)−

∫
dx v(x, x)ψ†(x)ψ(x)︸ ︷︷ ︸

0


= −1

2
r

∫
dx

∫
dx′ v(x, x′)ψ†(x)ψ†(x′)ψ(x)ψ(x′)︸ ︷︷ ︸

−rψ(x′)ψ(x)

=
1

2
(−r)2︸ ︷︷ ︸

1

∫
dx

∫
dx′ v(x, x′)ψ†(x)ψ†(x′)ψ(x′)ψ(x), (39)

i.e. the second-quantized representation of Hint is

Hint =
1

2

∫
dx

∫
dx′ ψ†(x)ψ†(x′)v(x, x′)ψ(x′)ψ(x). (40)
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As an example, let us consider the Coulomb interaction between electrons. As electrons
have spin S = 1/2, we have in this case x = (r, σ) with σ = ±1/2, so ψ(x) = ψσ(r) and∫
d3x =

∑
σ

∫
d3r. The Coulomb interaction is given by

v(x, x′) =
e2

4πε0|r − r′|
≡ v(r − r′). (41)

Eq. (40) gives

Hint =
1

2

∑
σ,σ′

∫
d3r

∫
d3r′ ψ†σ(r)ψ†σ′(r

′)v(r − r′)ψσ′(r
′)ψσ(r). (42)

Let us rewrite this in terms of the momentum-spin single-particle basis (k, σ). Making use
of (18), we get

Hint =
1

2

∑
σ,σ′

∑
k1,k2,k3,k4

a†k1σ
a†k2σ′

ak3σ′ak4σ

· 1

V 2

∫
d3r

∫
d3r′ v(r − r′)e−i(k1−k4)·re−i(k2−k3)·r′ (43)

Let us define R = r − r′ and change integration variables to R and r′. The integrals then
factorize as follows:

1

V

∫
d3Rv(R)e−i(k1−k4)·R︸ ︷︷ ︸

≡vk1−k4

· 1

V

∫
d3r′ e−i(k2−k3+k1−k4)·r′︸ ︷︷ ︸

=δk1,k4+k3−k2

(44)

where vq is the Fourier transform of v(r). Doing the summation over k1 then gives

Hint =
1

2

∑
σ,σ′

∑
k2,k3,k4

vk3−k2 a
†
k4+k3−k2,σ

a†k2σ′
ak3σ′ak4σ. (45)

Let us define new summation variables k, k′, and q by

k4 ≡ k, k3 ≡ k′, k2 ≡ k′ − q. (46)

This gives

k4 + k3 − k2 = k + q, (47)

k3 − k2 = q. (48)

Thus

Hint =
1

2V

∑
q

vq
∑
k,σ

k′,σ′

a†k+q,σa
†
k′−q,σ′ak′σ′akσ. (49)
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This expression describes scattering processes in which two electrons scatter by exchanging
momentum q. Before the scattering the electrons have momenta k and k′, after the scattering
the electrons have momenta k + q and k′ − q. Note that the total momentum k + k′ is
conserved in the scattering process. This is a consequence of the translational invariance of
the interaction, i.e. the fact that it only depends on r− r′, not on r and r′ separately. Also
note that since the Coulomb interaction (41) is spin-independent, the electrons spins are not
affected by the scattering process. A diagrammatic representation of the scattering process
is shown in the figure.

Mathematically, the scattering is described by the annihilation of the incoming electrons
with momentum k and k′ and the creation of the outgoing electrons with momentum k + q
and k′ − q. For the Coulomb interaction, vq ∝ 1/|q|2. The divergence of vq at small |q| is
due to the long-range nature of v(r).

Basis transformations

So far in our discussion of second quantization we have only used two different single-particle
basis sets, having quantum numbers r or k respectively, i.e. they consist of eigenfunctions
of the position operator or of the momentum operator (equivalently the kinetic energy). For
particles with spin, the wavefunction also contains a spin part, and so we also include the spin
projection along the z direction as another quantum number in order to fully characterize
the single-particle wavefunctions in each of these basis sets. For example, Eqs. (23) and
(42) make use of the (r, σ) basis set, while Eqs. (22) and (49) make use of the (k, σ) basis
set. While these two basis sets are often the most suitable and convenient to use, there can
also be other systems for which it is preferable to use a different basis set. For example,
if the electrons are subject to an external potential u(x), it can be convenient to use the
single-particle basis of eigenfunctions of the operator −(h̄2/2m)∇2 + u(x). In the following
we discuss how to relate creation/annihilation operators in one basis to creation/annihilation
operators in another basis.

Let |α〉 be the single-particle ket whose overlap with the position-spin eigenstate |x〉 is
the single-particle wavefunction φα(x), i.e.

φα(x) ≡ 〈x|α〉. (50)

For both bosonic and fermionic particles we can write

|α〉 = a†α|0〉 (51)
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where a†α is the creation operator for a particle in single-particle state α. Let us now consider
a different single-particle basis set {φ̃α̃(x)} whose single-particle kets are denoted |α̃〉. That
is,

φ̃α̃(x) ≡ 〈x|α̃〉 (52)

with
|α̃〉 = a†α̃|0〉, (53)

i.e. a†α̃ is the creation operator for a particle in the single-particle state α̃. As a concrete
example, {|α〉} could be the set of eigenstates of the kinetic-energy operator −(h̄2/2m)∇2,
while {|α̃〉} could be the eigenstates of the operator −(h̄2/2m)∇2 + u(x), where u(x) is a
external potential.

To transform between the two single-particle basis sets we use the resolution of the identity
I in the single-particle Hilbert space:

I =
∑
α

|α〉〈α| =
∑
α̃

|α̃〉〈α̃|. (54)

Thus
a†α|0〉 = |α〉 =

∑
α̃

|α̃〉〈α̃|α〉 =
∑
α̃

〈α̃|α〉|α̃〉 =
∑
α̃

〈α̃|α〉a†α̃|0〉 (55)

and thus
a†α =

∑
α̃

〈α̃|α〉a†α̃. (56)

Taking the adjoint of this equation gives the transformation rule for the annihilation opera-
tors:

aα =
∑
α̃

〈α|α̃〉aα̃. (57)

The inverse transformations can be derived in the same way (or more simply by interchanging
α and α̃ in the expressions so far):

a†α̃ =
∑
α

〈α|α̃〉a†α, (58)

aα̃ =
∑
α

〈α̃|α〉aα. (59)

From these results we can also find the transformation rules for the wavefunctions:

φα(x) = 〈x|α〉 = 〈x|

(∑
α̃

〈α̃|α〉|α̃〉

)
=
∑
α̃

〈α̃|α〉〈x|α̃〉 =
∑
α̃

〈α̃|α〉φ̃α̃(x), (60)

and similarly

φ̃α̃(x) =
∑
α

〈α|α̃〉φα(x). (61)
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The basis transformations are unitary transformations. To see this, consider the matrix D
defined by the matrix elements entering the transformations: Dα̃α ≡ 〈α̃|α〉. D is a unitary
matrix, since

δα̃,β̃ = 〈α̃|β̃〉 =
∑
γ

〈α̃|γ〉〈γ|β̃〉 =
∑
γ

〈α̃|γ〉〈β̃|γ〉∗

=
∑
γ

Dα̃γD
∗
β̃γ

=
∑
γ

Dα̃γ(D
†)γβ̃ = (DD†)α̃β̃, ⇒ DD† = I. (62)

The basis transformations preserve (anti-)commutation relations. In other words, the cre-
ation/annihilation operators in the new basis satisfy the same kinds of (anti-)commutation
relations as the creation/annihilation operators in the old basis. Thus, for example, from
the fact that [aα, a

†
α′ ]r = δαα′ (see Eq. (37)) it follows that

[aα̃, a
†
α̃′ ]r =

∑
α,α′

〈α̃|α〉〈α′|α̃′〉 [aα, a†α′ ]r︸ ︷︷ ︸
δαα′

= 〈α̃|α̃′〉 = δα̃,α̃′ . (63)

Similarly, it is easily shown that [aα̃, aα̃′ ]r = [a†α̃, a
†
α̃′ ]r = 0 just like the corresponding (anti-

)commutators in the old basis.

The field operators ψ(x) and ψ†(x) are just the annihilation and creation operators corre-
sponding to the position-spin basis set {|x〉}. (In other words, the field operators could more
logically have been denoted by ax and a†x, but for some reason (probably mainly historical)
this notation is not used for the position-spin basis.) Thus taking α̃ = x in (58)-(59) and
using (50) we get

ψ†(x) =
∑
α

φ∗α(x) a†α, (64)

ψ(x) =
∑
α

φα(x) aα. (65)

Note that in (63) we used 〈α̃|α̃′〉 = δα̃,α̃′ , which is based on the assumption that the quantum
numbers α̃ can take a discrete set of values. That is not the case for the position-spin
quantum number x, because the position quantum number r takes values from a continuous
set. Therefore we have 〈r|r′〉 = δ(r − r′), a Dirac delta function. Thus we get

[ψ(x), ψ†(x)]r = δ(x− x′), (66)

where δ(x− x′) ≡ δ(r − r′) for spinless particles; otherwise δ(x− x′) ≡ δσσ′δ(r − r′).

To check that Eqs. (64)-(65) are consistent with previous results, let us show that (64)
implies (18). Thus α = (k, σ′) and x = (r, σ). The momentum-spin eigenfunctions are

φα(x) ≡ 〈x|α〉 = 〈r, σ|k, σ′〉 = 〈r|k〉︸ ︷︷ ︸
V −1/2eik·r

〈σ|σ′〉︸ ︷︷ ︸
δσ,σ′

. (67)
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Thus

ψσ(r) =
∑
k,σ′

1√
V
eik·rδσσ′akσ′ =

1√
V

∑
k

eik·rakσ. QED. (68)

Finally, let us express the kinetic energy operator H0 and the two-particle interaction Hint

in terms of an arbitrary single-particle basis set. Inserting (64)-(65) into (40) immediately
gives

Hint =
1

2

∑
α,β,γ,δ

[∫ ∫
dxdx′ φ∗α(x)φ∗β(x′)v(x, x′)φδ(x

′)φγ(x)

]
a†αa

†
βaδaγ. (69)

For the kinetic energy, starting from

H0 =

∫
d3xψ†(x)

(
− h̄2

2m
∇2

)
ψ(x) (70)

we similarly get

H0 =
∑
α,β

[∫
dx φ∗α(x)

(
− h̄2

2m
∇2

)
φβ(x)

]
a†αaβ. (71)

(we emphasize that in both (69) and (71) the quantities inside square brackets are just
c-numbers).

More on first vs. second quantization

(At this point in the lectures I decided to go into a bit more detail on the first vs. second
quantization formalisms, and the relationship between them. The exercises for week 13 also
deal with this.)

So far the way we introduced the second quantization formalism was via the field quanti-
zation (”canonical quantization”) procedure introduced in Ch. 5 in JOA. Now we will discuss
an alternative way of thinking about the second quantization formalism for nonrelativistic
systems, and how it is connected to the first quantization formalism. These two formalisms
are then alternative and equivalent ways of analyzing the same system. In each formalism
we have representations for two types of objects: states |Ψ〉 and operators O. These objects
are however rather abstract in nature. Much more concrete are matrix elements, 〈Ψ′|O|Ψ〉,
since they are just ordinary numbers (c-numbers). All physically measurable quantities are
expressible in terms of matrix elements. (Expectation values correspond to the special case
|Ψ〉 = |Ψ′〉.) One key point is that although the representations of states and operators
are very different in first and second quantization, the matrix elements must of course take
the same value regardless of which of the two formalisms one uses to calculate them. Fur-
thermore, note that since an arbitrary many-particle state |Ψ〉 can be expressed as a linear
combination of many-particle basis states |Φm〉, i.e.

|Ψ〉 =
∑
m

fm|Φm〉, (72)
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where fm are expansion coefficients, it suffices to consider matrix elements involving many-
particle basis states only, i.e. matrix elements of the form

〈Φm|O|Φn〉. (73)

The many-particle basis states can in turn be constructed from single-particle states in a
chosen single-particle basis set. We will first discuss how this is done in the first quantization
formalism.

First quantization

In the first quantization formalism, the single-particle basis consists of eigenfunctions of a
hermitian operator ô. Although not necessary, it is often convenient to take ô = ĥ, where
ĥ is the operator involved in the noninteracting part H0 of the full Hamiltonian of the
many-particle system. That is, H = H0 +Hint, with

H0 =
N∑
i=1

ĥi where ĥi = − h̄2

2m
∇2
i + u(xi) (74)

where u(x) is an external potential (which may be 0). We assume that we have found the
eigenfunctions φν(x) and associated eigenvalues εν for the single-particle problem defined by
ô, i.e.

ôφν(x) = ενφν(x). (75)

Here ν is a set of quantum numbers which completely characterize the single-particle eigen-
states φν . These states form a complete and orthonormal set for expanding single-particle
wavefunctions.

From these single-particle wavefunctions we can then construct many-particle wavefunc-
tions with the the correct symmetry. These many-particle wavefunctions are eigenfunctions
of the operator Ô =

∑N
i=1 ôi. For bosons the wavefunction must be symmetric and can be

written on the form (the superscript S stands for ”symmetric”)

Φ(S)(x1, . . . , xN) =
1√

N !
√∏

k nk!

∑
P∈SN

P φν1(x1)φν2(x2) · · ·φνN (xN). (76)

Here the sum is over all permutations P of the N coordinates x1, . . . , xN . SN is the set of
all these permutations; there are N ! permutations in all. The prefactor has been chosen to
make the state normalized to 1. The product

∏
k nk! = n1!n2!n3! . . . is over all single-particle

states; nk is the number of bosons in the single-particle state k. Note that for bosons there
is no restriction in how many particles can be in the same single-particle state. Hence in this
expression different indices νj can be identical. For example, if ν3 = ν5 (and all other indices
are different from ν3) the many-particle state would have two particles in the single-particle
state ν3, hence nν3 = 2.
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For fermions the wavefunction must be antisymmetric and can be written (the superscript
A stands for ”antisymmetric”)

Φ(A)(x1, . . . , xN) =
1√
N !

∑
P∈SN

sgn(P ) · P φν1(x1)φν2(x2) · · ·φνN (xN). (77)

Compared to the bosonic case, there are two differences: (1) The product over occupation
numbers nk! in the prefactor is not there (this is because, as we will shortly see, for fermions
nk can only be 0 or 1 (otherwise the wavefunction will vanish), in which case nk! = 1 and
thus this product doesn’t have to be explicitly included), and (2) there is a factor sgn(P )
inside the sum. This is the sign of the permutation P . A permutation has a positive
(negative) sign if it can be arrived at by an even (odd) number of two-particle permutations
(transpositions). For example, suppose we had 3 fermions. Let us consider the permutation
(123)→ (231). Any permutation can be written as a product of transpositions Pjk, each of
which interchanges the numbers at position j and k. For example, we have P13(123) = (321)
and P12(321) = (231). Hence we can write (231) = P12P13(123). Thus this permutation can
be written in terms of an even number of transpositions, and the sign of the permutation
is therefore positive. Although the way to express a permutation in terms of transpositions
is not unique, the evenness/oddness is unique, and hence the sign is also unique. In the
example just considered, we could have written (check!) (231) = P23P13P12P23(123), which
involves four transpositions, again an even number.

The fermionic wavefunction in (77) can be written as a determinant (known as a Slater
determinant):

Φ(A) =
1√
N !

∣∣∣∣∣∣∣
φν1(x1) · · · φν1(xN)
...

...
φνN (x1) · · · φνN (xN)

∣∣∣∣∣∣∣ . (78)

Note that the determinant of a matrix vanishes if it contains identical rows and/or identical
columns. Therefore the determinant (78) will vanish if νi = νj for some i 6= j, i.e. it is not
possible to put more than one fermion into a given single-particle state. The determinant
will also vanish if xi = xj for some i 6= j, i.e. it is not possible to bring two fermions with the
same spin projection to the same point. These properties are known as the Pauli exclusion
principle.

Given some collection of N (singly) occupied single-particle states, the fermionic many-
particle wavefunction (78) constructed from them is defined only up to an overall sign. For
example, consider a two-particle state, with two single-particle states (just call them 1 and
3) occupied. Then we could define the wavefunction either as

Φ(A1) =
1√
2

(φ1(x1)φ3(x2)− φ1(x2)φ3(x1), (79)

or as

Φ(A2) =
1√
2

(φ3(x1)φ1(x2)− φ3(x2)φ1(x1)) = −Φ(A1). (80)
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In order to define a unique sign for any such fermionic many-particle wavefunction, we first
decide on an ordering (that we subsequently stick to) of the states νi in the complete set
of single-particle states. Then, when constructing the many-particle wavefunction out of N
such states we use that ordering in the determinant. In this way we avoid ambiguities in the
overall sign of the many-particle basis wavefunctions.

Second quantization

Let us now discuss basis states in second quantization. For concreteness we assume that the
particles are fermions. As an example, consider a system of 3 fermions. Basis functions will
then be specified in terms of 3 occupied single-particle states ν1, ν2, ν3. Assuming that these
are ordered in the way described in the previous paragraph (i.e. ν1 < ν2 < ν3), the basis
function reads

Φ(x1, x2, x3) =
1√
3!

∑
P∈S3

sgn(P )φν1(x1)φν2(x2)φν3(x3). (81)

Then the corresponding basis state in second quantization is given by

a†ν1a
†
ν2
a†ν3|0〉 (82)

where a†ν creates a particle in the single-particle state ν and |0〉 is the vacuum state with no
particles, defined by aν |0〉 = 0. This correspondence between basis states in first and second
quantization generalizes in an obvious way to systems with a general number of particles N .
Thus any basis state in first quantization has an analogous basis state in second quantization.
There exists an explicit connection between the basis states in the two formalisms; this is
discussed in the exercises for Week 13. In second quantization, a general fermionic basis
state can be written on the form

(a†1)n1(a†2)n2(a†3)n3(a†4)n4 . . . |0〉 ≡ |n1, n2, n3, n4, . . .〉 (83)

where nν = 1 if the single-particle state ν is occupied and nν = 0 if it is empty (in this
expression we have for simplicity labeled the single-particle states ν as integers 1,2,3,4,. . . ).
Note that on the left-hand side of (83) the creation operator a†ν appears if and only if nν = 1
(since z0 = 1 and z1 = z). The expression on the right-hand side is just a list of the
occupation numbers in the ordered set of single-particle states. For this reason the second
quantization formalism is often alternatively referred to as the occupation-number formalism.

The state (83) is an eigenstate of the number operator n̂ν = a†νaν with eigenvalue nν :

n̂ν |n1, n2, n3, n4, . . .〉 = nν |n1, n2, n3, n4, . . .〉. (84)

To prove this we use that
[n̂ν , a

†
ν′ ] = a†νδν,ν′ . (85)

There are two cases to consider: nν = 0 and nν = 1. If nν = 0, n̂ν commutes with all
the creation operators in |n1, n2, n3, n4, . . .〉. Therefore we can move n̂ν past all creation
operators until it stands to the immediate left of |0〉, and then we use n̂ν |0〉 = 0. If nν = 1,
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n̂ν commutes with all creation operators except a†ν . Thus we first move n̂ν past all creation
operators that stand to the left of a†ν . Then we use n̂νa

†
ν = a†νn̂ν + a†ν . In the first term we

can move n̂ν all the way to the right again and use n̂ν |0〉 = 0. The second term just gives
|n1, n2, n3, n4, . . .〉. So regardless of the value of nν we can write the result as the rhs of (84),
which concludes the proof.

Second-quantized representation of single-particle operators

Consider an arbitrary single-particle operator in the first quantization formalism,

Ô =
N∑
i=1

ôi. (86)

(It is called a single-particle operator because it is a sum of terms, each of which involves
only a single particle.) Let {|α̃〉} denote the single-particle basis of eigenstates of ô, i.e.

ô|α̃〉 = oα̃|α̃〉 (87)

where oα̃ is the eigenvalue of ô associated with the eigenstate |α̃〉. Then we claim that the
representation of Ô in the second quantization formalism can be written

Ô =
∑
α̃

oα̃n̂α̃ (88)

where n̂α̃ = a†α̃aα̃ is the number operator for state |α̃〉. To prove this, we calculate the matrix

elements of Ô in both first and second quantization and show that both formalisms give the
same result (here, we use the many-particle basis that is built from the single-particle basis
{|α̃〉}). Consider then the matrix element 〈Φ′|Ô|Φ〉 where |Φ〉 and |Φ′〉 are two arbitrary
basis states in this many-particle basis set. Using second quantization this matrix element
is

〈Φ′|Ô|Φ〉 = 〈n′α̃1
, n′α̃2

, . . . |
∑
α̃

oα̃n̂α̃|nα̃1 , nα̃2 , . . .〉

=
∑
α̃

oα̃nα̃〈n′α̃1
, n′α̃2

, . . . |nα̃1 , nα̃2 , . . .〉

= δΦ,Φ′

∑
α̃

oα̃nα̃. (89)

If we instead use first quantization we get the same result:

〈Φ′|Ô|Φ〉 =

∫
dNx Φ′∗(x1, . . . , xN)

N∑
i=1

ô(xi)Φ(x1, . . . , xN)

=
∑
α̃

oα̃nα̃

∫
dNx Φ′∗(x1, . . . , xN)Φ(x1, . . . , xN)

= δΦ,Φ′

∑
α̃

oα̃nα̃, (90)
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where we used a result shown in Exercise 1(iii) for Week 13. This proves (88). Note again
that in (88) the single-particle basis used is the one that diagonalizes ô, i.e. this expression
for Ô is not valid for an arbitrary basis. However, starting from this expression we can use
the basis transformations considered earlier to derive an expression for Ô that is valid in an
arbitrary basis:

Ô =
∑
α̃

oα̃a
†
α̃aα̃ =

∑
α̃

oα̃

(∑
α

〈α|α̃〉a†α

)(∑
β

〈α̃|β〉aβ

)

=
∑
α,β

〈α|

(∑
α̃

|α̃〉oα̃〈α̃|

)
︸ ︷︷ ︸

ô

|β〉a†αaβ =
∑
α,β

〈α|ô|β〉a†αaβ. (91)

Here we used that the eigenvalue equation ô|α̃〉 = oα̃|α̃〉 implies that we can write ô = ôI =
ô
∑

α̃ |α̃〉〈α̃| =
∑

α̃ oα̃|α̃〉〈α̃| =
∑

α̃ |α̃〉oα̃〈α̃|. The matrix element 〈α|ô|β〉 can be written3

〈α|ô|β〉 =

∫
dx

∫
dx′ 〈α|x〉 〈x|ô|x′〉︸ ︷︷ ︸

ô(x)δ(x−x′)

〈x′|β〉 =

∫
dx 〈α|x〉ô(x)〈x|β〉 =

∫
dx φ∗α(x)ô(x)φβ(x).

(92)
Thus the second quantized representation of a single-particle operator Ô can be written

Ô =
∑
α,β

[∫
dx φ∗α(x)ô(x)φβ(x)

]
a†αaβ. (93)

In particular, using Eqs. (64)-(65) this can be expressed in terms of field operators as

Ô =

∫
dx ψ†(x)ô(x)ψ(x). (94)

Using Eqs. (88), (93), or (94) it is now easy to (re-)derive the second-quantized represen-
tations of various single-particle operators from their first-quantized form. Let’s start with
the kinetic energy operator (27). Eq. (22) follows directly from (88) by noting that the
electronic eigenfunctions of −(h̄2/2m)∇2 have quantum numbers (k, σ) where k labels the
plane wave with associated eigenvalue h̄2k2/2m. Similarly, Eq. (23) follows immediately
from (94) with ô(x) = −(h̄2/2m)∇2. By exactly the same reasoning, the total momentum
operator P , which in first-quantization is given by

P =
N∑
j=1

h̄

i
∇j, (95)

3Note that 〈x|ô|x′〉 = ô(x)δ(x − x′) is valid also if ô is not diagonal in the x-basis, for example if
ô is the momentum operator p̂ or some power of it. To see this, let’s forget about spin for simplicity
and take x to mean position only. Then from [x̂, p̂] = ih̄ we get 〈x|[x̂, p̂]|x′〉 = ih̄δ(x − x′). On the
other hand, 〈x|[x̂, p̂]|x′〉 = 〈x|(x̂p̂ − p̂x̂)|x′〉 = (x − x′)〈x|p̂|x′〉. Therefore 〈x|p̂|x′〉 = ih̄δ(x − x′)/(x − x′).
Now use (d/dx)δ(x − x′) = (du/dx)(d/du)δ(u) with u = x − x′. Using (d/du)δ(u) = −δ(u)/u this gives
(d/dx)δ(x − x′) = −δ(x − x′)/(x − x′). Thus 〈x|p̂|x′〉 = −ih̄(d/dx)δ(x − x′) which is on the claimed form
with p̂(x) = −ih̄(d/dx).
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can in second quantization be written

P =
∑
kσ

h̄k a†kσakσ =
∑
σ

∫
d3r ψ†σ(r)

h̄

i
∇ψσ(r). (96)

Let us derive the first expression here using (93) to illustrate its use as well. With x = (r, s)
and β = (k, σ) the eigenfunctions in (93) are of the form φβ(x) = φkσ(r, s) = (1/

√
V )eik·rδsσ.

Thus ∫
dx φ∗α(x)

h̄

i
∇φβ(x) =

∑
s

∫
V

d3r

(
1√
V
e−ik

′·rδsσ′

)
h̄

i
∇
(

1√
V
eik·rδsσ

)
(97)

=
∑
s

∫
V

d3r

(
1√
V
e−ik

′·rδsσ′

)
h̄

i
ik

(
1√
V
eik·rδsσ

)

= h̄k

(
1

V

∫
d3r ei(k−k

′)·r
) (∑

s

δsσ′δsσ

)
= h̄k δkk′δσσ′ . (98)

Putting this back into (93) we get the first expression in (96). Finally, let us consider the
density operator ρ(x), whose first-quantized form is given in (32). Eq. (93) gives

ρ(x) =
∑
αβ

(∫
dy φ∗α(y)δ(x− y)φβ(y)

)
a†αaβ

=
∑
α,β

φ∗α(x)φβ(x) a†αaβ. (99)

where the single-particle basis {|α〉} is arbitrary. Note that we used y as an integration
variable in the integral here, since x was already “taken” since ρ(x) depends on x as a
parameter. Using (64)-(65) we immediately get (31). A more direct route to (31) would be
to use (94):

ρ(x) =

∫
dy ψ†(y)δ(x− y)ψ(y) = ψ†(x)ψ(x). (100)

What about two-particle operators? The method of calculating matrix elements in both
first and second quantization and demanding that they be identical, could also be used to
derive the second-quantized representation (40) of two-particle operators. However, this
proof is much more tedious than the one we gave earlier (Eqs. (29)-(40)) and won’t be
presented here.


