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Exercises for week 4

(Just to emphasize what I also said in the lectures: If any of you have questions about
tutorial exercises and how to solve them before the Thursday tutorial class, you are very
welcome to email me or drop by my office to discuss.)

In the lectures we have focused on cases where the Lagrangian density L depends on a single
field ϕ and its derivatives ∂µϕ. The generalization to multiple fields is straightforward. If L
depends on N fields ϕi and their derivatives ∂µϕi, there is one Euler-Lagrange equation for
each field:

∂L
∂ϕi
− ∂µ

∂L
∂(∂µϕi)

= 0 (i = 1, . . . , N). (1)

Furthermore, if an infinitesimal transformation of these fields given by

ϕi(x)→ ϕ′i(x) = ϕi(x) + β∆ϕi(x) (i = 1, . . . , N) (2)

causes the Lagrangian density to transform as

L → L′ = L+ β∂µJ µ, (3)

Noether’s theorem gives the local conservation law ∂µj
µ = 0 with

jµ =
∑
i

∂L
∂(∂µϕi)

∆ϕi − J µ. (4)

Exercise 1

Consider the Lagrangian density

L =
1

2

∑
i=1,2

[
(∂µφi)(∂

µφi)−m2φ2
i

]
(5)

where φ1 and φ2 are real scalar fields.

(a) Find the equations of motion.

(b) Consider the field transformation given by

φ1 → φ′1 = φ1 cosα− φ2 sinα, (6)

φ2 → φ′2 = φ1 sinα + φ2 cosα. (7)

You may recognize this as a rotation by angle α in the two-dimensional space with φ1 along
the horizontal axis and φ2 along the vertical axis.
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Show that the Lagrangian density is invariant under this transformation, i.e. L′ = L.

(c) Find the infinitesimal form of the transformation given by Eqs. (6)-(7).

(d) Show that
jµ = φ1∂

µφ2 − φ2∂
µφ1. (8)

Exercise 2

The purpose of this exercise is to illustrate how the classical field theory defined by Eq. (5)
in terms of the two real fields φ1 and φ2 can alternatively and more simply be described and
analyzed in terms of the complex field Φ defined as

Φ =
1√
2

(φ1 + iφ2) (9)

and its complex conjugate Φ∗.

(a) Show that the Lagrangian density in Eq. (5) can be written

L = (∂µΦ∗)(∂µΦ)−m2Φ∗Φ. (10)

(b) It is possible, and very convenient, to derive the equations of motion by treating Φ and
Φ∗ formally as independent1 fields to be used in the E-L equations (1). Find the equation
of motion resulting from the Euler-Lagrange equation for Φ∗, i.e.2

∂L
∂Φ∗
− ∂µ

∂L
∂(∂µΦ∗)

= 0. (11)

Show that the result is indeed equivalent to the equations of motion found in Exercise 1.(a).

1Note that φ1 and φ2 can be expressed in terms of Φ and Φ∗ as

φ1 =
1√
2

(Φ + Φ∗),

φ2 = − i√
2

(Φ− Φ∗).

Treating Φ and Φ∗ as if they were independent then gives

∂

∂Φ
=

∂φ1

∂Φ

∂

∂φ1
+
∂φ2

∂Φ

∂

∂φ2
=

1√
2

(
∂

∂φ1
− i ∂

∂φ2

)
,

∂

∂Φ∗ =
∂φ1

∂Φ∗
∂

∂φ1
+
∂φ2

∂Φ∗
∂

∂φ2
=

1√
2

(
∂

∂φ1
+ i

∂

∂φ2

)
.

From these equations it follows that ∂Φ
∂Φ = ∂Φ∗

∂Φ∗ = 1 and ∂Φ∗

∂Φ = ∂Φ∗

∂Φ = 0, as expected for independent fields.
2We could have considered the Euler-Lagrange equation for Φ as well, but this wouldn’t give any additional

information, as it is just the complex conjugate of Eq. (11).
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(c) The transformation (6)-(7) can be expressed in terms of Φ and Φ∗ as

Φ→ Φ′ = Φ eiα (⇒ Φ∗ → Φ′∗ = Φ∗e−iα). (12)

Verify that L, as expressed in Eq. (10), is indeed invariant under this transformation.

(d) Find the infinitesimal form of (12).

(e) By using Φ and Φ∗ as the fields in Eq. (4), show that

jµ = i [Φ∂µΦ∗ − Φ∗∂µΦ] . (13)

Verify that this agrees with the expression (8).


