
Exercises for week 13

Exercise 1

(a) Consider an arbitrary Hermitian single-particle operator Ô. In the ”1st quantization”
formalism, Ô takes the form

Ô =
N∑
i=1

ôi (1)

where N is the number of particles in the system. Let φν(x) and εν be the eigenfunctions
and associated eigenvalues of ô, i.e.

ô φν(x) = ενφν(x). (2)

Here ν is a set of quantum numbers which completely characterize the single-particle eigen-
functions. As discussed in the lectures, we can use these to construct a basis set for many-
particle wavefunctions. The (normalized) basis functions can be written

Φν1,ν2,...,νN (x1, x2, . . . , xN) =
1√

N !
√∏

ν nν !

∑
P∈SN

ζtP · Pφν1(x1)φν2(x2) . . . φνN (xN) (3)

where ξ = ±1 for bosons/fermions and tP is the number of transpositions (2-particle per-
mutations) associated with the permutation P .1 SN is the set of all N ! permutations. Fur-
thermore, nν is the number of particles in the single-particle state φν in the many-particle
state Φν1,ν2,...,νN (for fermions this can only be 0 or 1, hence

√∏
ν nν ! = 1 in the fermionic

case and can therefore be omitted).

(i) Write down an example of a basis function for a system of 3 fermions where all single-
particle states ν1, ν2, ν3 are different (write the state out explicitly, i.e. all 3! = 6 terms).

(ii) Demonstrate that the function changes sign if the coordinates of two particles are inter-
changed, e.g. x1 and x2. Furthermore, demonstrate that if two or more of the single-particle
states are chosen to be the same, the basis function vanishes. These properties are in accor-
dance with the Pauli exclusion principle.

(iii) Show that Φν1,ν2,...,νN as given in (3) is an eigenfunction of Ô with eigenvalue
∑
ν oνnν .

1As discussed in the lectures, tP is not unique, but its evenness/oddness is, so that the sign ζtP is
well-defined.
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Exercise 2

In the ”2nd quantization” formalism, many-particle basis states take the form

|n1, n2, n3, . . . , 〉 = (a†1)
n1(a†2)

n2(a†3)
n3 . . . |0〉, (4)

where |0〉 is the ”vacuum” state with no particles, and a†ν creates a particle in the single-
particle state with wavefunction φν(x).2

(i) Write down the basis state in 2nd quantization that corresponds to the 1st quantization
basis state discussed in Exercise 1.(i).

(ii) An explicit connection between the basis states |n1, n2, . . .〉 ≡ |n〉 in 2nd quantization
and the basis functions Φn(x1, x2, . . . , xN) in 1st quantization can be established. Let

|x1, x2, . . . , xN〉 ≡
1√
N !
ψ†(x1)ψ

†(x2) . . . ψ
†(xN)|0〉. (5)

Then the (correctly normalized) basis wavefunctions are given by

Φn(x1, . . . , xN) = 〈x1, . . . , xN |n〉. (6)

As an example, take |n〉 to be the 3-particle fermionic state considered in Exercise 2.(i).
Calculate the rhs of Eq. (6) to show that the wavefunction is indeed that considered in
Exercise 1.(i).

2In Eq. (4) we have for simplicity just replaced the quantum numbers ν labeling a single-particle state
by an integer label, i.e. the different states in the single-particle basis are labeled 1, 2, 3, . . ..


