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1 Motivation

The Green function methods for quantum many-body systems were mainly developed in the
1950’s and early 60’s. Before plunging into the formalism we briefly summarize some main
motivations behind this development.

1.1 Connection to experiments

Here we will be very sketchy. Consider an experiment in which one exposes the system to
some disturbance (whose strength is controlled by some external applied field f(r, t)) and
measures the response of the system. When the applied field is weak one expects the response
to depend linearly on the applied field. This is called linear response. The “proportionality
factor” is the associated response function. The basic equations can be shown to be (here
we suppress all variables except the time variables)

Htot = H − f(t)O, (1)

〈O(t)〉 = 〈O〉+

∫ ∞
−∞

χ(t− t′)f(t′)dt′, (2)

χ(t− t′) = −i〈[O(t), O(t′)]〉θ(t− t′). (3)

Here H (Htot) is the Hamiltonian of the system in the absence (presence) of the applied field
f(t), 〈O(t)〉 is the response (in terms of the operator O) of the system to the field, with 〈O〉
being the expectation value of O in the absence of the applied field (which often vanishes).
The function χ(t) is a retarded response function (retarded means that it’s only nonzero for
t > t′, i.e. cause comes before effect). Other names sometimes used for such a quantity is
susceptibility, correlation function or Green function. (As we will see there are many other,
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related quantities that are also called Green functions). Note that the expectation value in
(3) is with respect to the undisturbed system, i.e. in the absence of the applied field.

For example the electrical conductivity σ(q, ω) is related to a response function where the
O’s are given by the current operators, i.e. a retarded current-current correlation function.
(Here the variables q and ω arise from taking Fourier transforms in space and time.) If time
allows we will study the conductivity σ(q, ω) in more detail later (see Secs. 4.9 and 4.10).

Retarded Green functions and functions related to these are thus central objects to
calculate in many-body theory for comparing with experiments.

1.2 Divergences in the standard perturbation theory

One of the important early problems was to find the ground state energy of a gas of electrons
interacting via the long-ranged Coulomb interaction in 3 dimensions. (To ensure charge
neutrality this gas was embedded in a positive and uniform background charge.) Consider
the kinetic energy and potential energy of this electron gas as a function of r0, the average
distance between two electrons (in 3D r0 ∝ n−1/3 where n is the electron density). One
can show that the kinetic energy per electron goes like 1/r20. and that the typical Coulomb
interaction energy per electron goes like 1/r0. Thus for small r0, i.e. a high-density gas, the
kinetic energy dominates over the interaction energy, and one might hope that it is possible
to treat the Coulomb interaction as a perturbation to the kinetic energy.1 Thus in this limit
one might hope that the ground state energy can be expressed in terms of a power series in
the small dimensionless parameter rs = r0/aB (aB is the Bohr radius) like

E0 =
K

r2s
[1 + brs + cr2s + . . .] (anticipated, but turns out to be not quite right) (4)

where K, a, b, c, etc. are constants. Indeed, 1st order perturbation theory gives a term
of the form brs in this series. But if one goes one step further and considers 2nd order
perturbation theory, one finds a contribution which diverges like

∫
0
dq/q, where q is the

momentum transfer in the Fourier transform vq of the Coulomb interaction (vq ∝ 1/q2).
That is, there is a logarithmic divergence from the lower limit 0 of the momentum transfers.
This divergence is associated with the long range of the Coulomb interaction. Furthermore,
if one examines higher order terms in the perturbation series one finds that they diverge
even more strongly. Thus standard perturbation theory appears to be worthless.

On physical grounds, however, one does of course expect the energy of the interacting
electron gas to be a finite and well-defined number, and no phase transitions occur as one
“turns on” the repulsive interactions, so this failure of standard perturbation theory appears
just to be a signal that the energy does not have a standard power series expansion in rs. In
1957 Gell-Mann and Bruckner resolved this issue by using the recently developed many-body
perturbation theory. Essentially what they did was to sum all the most divergent terms in
the series (an infinite number of them) before doing the momentum integrals, and showed
that one could then arrive at a result which was well-defined and finite (this is called a
resummation of the perturbation series). They found that there was a term in the series for
E0 which is ∝ ln rs, and thus indeed is not analytic at rs = 0.

1This assumes at the very least that the interaction doesn’t cause any drastic changes to the system, such
as a phase transition.
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The solution of this problem thus requires one to include an infinite number of terms in
the perturbation theory. Clearly one needs to develop a new method to be able to do this
in an efficient way, and this is one of the main strengths of many-body perturbation theory.
We will also see other examples where one needs to include an infinite number of terms in
the perturbation theory.

2 The single-particle retarded Green function and its

spectral function

Most response functions, e.g. the conductivity, involve retarded two-particle Green functions,
in which the operator O in (3) involves the product of two creation/annihilation operators.
However, we will start by discussing single-particle Green functions, as they are the simplest
ones. Essentially, single-particle Green functions involve operators O which are a single cre-
ation or annihilation operator. In the fermionic case, the commutator in (3) is then replaced
by an anticommutator in the definition of the retarded single-particle Green function.

2.1 Retarded, advanced, “greater”, and “lesser” single-particle
Green functions

The retarded single-particle Green function is defined as

GR(x, t;x′, t′) ≡ −iθ(t− t′)〈[ψ(x, t), ψ†(x′, t′)]±〉. (5)

The upper sign is for fermions, when [A,B]+ ≡ {A,B} is the anticommutator. The lower sign
is for bosons, when [A,B]− ≡ [A,B] is the ordinary commutator. Furthermore, x ≡ (r, σ),
so that ψ†(x) ≡ ψ†σ(r) creates a particle at position r with spin projection σ (if the particle
has a spin degree of freedom). We also define an advanced Green function as

GA(x, t;x′, t′) ≡ +iθ(t′ − t)〈[ψ(x, t), ψ†(x′, t′)]±〉. (6)

Note that the retarded function is nonzero only for t > t′ and the advanced function is
nonzero only for t < t′. It is also convenient at this point to define two other types of Green
functions, referred to as “G-greater” and “G-lesser”:

G>(x, t;x′, t′) ≡ −i〈ψ(x, t)ψ†(x′, t′)〉, (7)

G<(x, t;x′, t′) ≡ −i(∓)〈ψ†(x′, t′)ψ(x, t)〉. (8)

In G< the upper sign is again for fermions and the lower for bosons. The retarded and
advanced Green functions can then be expressed as

GR(x, t;x′, t′) = θ(t− t′)[G>(x, t;x′, t′)−G<(x, t;x′, t′)], (9)

GA(x, t;x′, t′) = θ(t′ − t)[G<(x, t;x′, t′)−G>(x, t;x′, t′)]. (10)
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2.2 The meaning of 〈· · · 〉 and the time dependence

We will consider a system with a macroscopic number of particles which is in thermodynamic
equilibrium at some temperature T (which may be zero or nonzero). The average 〈· · · 〉
represents a thermal + quantum average in such a system. In general, there are two kinds of
ensembles which may describe such systems: the canonical ensemble and the grand canonical
ensemble. Let us summarize these in turn, starting with the simpler one, the canonical
ensemble.

In the canonical ensemble the number of particles N in the system is fixed, and the
system can exchange energy with a reservoir. The average energy of the system is determined
by the temperature T . The quantum statistical-mechanical average of an arbitrary operator
A is in this ensemble given by

〈A〉 =
1

Z

∑
n

〈n|A|n〉e−βEn (11)

Here |n〉 refer to the set of (normalized) eigenstates of the Hamiltonian H with eigenvalues
En, β = 1/kBT , and Z =

∑
n e
−βEn is the partition function. We can write the expectation

value in a basis-independent way by defining the density matrix (calling it a matrix is
misleading, but that is the standard name; it really is an operator)

ρ =
1

Z
e−βH (12)

and
Z = Tr e−βH . (13)

(Clearly Tr ρ = 1 as required for a density matrix.) With this definition we can write

〈A〉 = Tr(ρA). (14)

In the grand canonical ensemble the system does not have a fixed particle number.
Instead, the system can exchange particles (in addition to energy) with a reservoir. Thus
we need to introduce another parameter (in addition to the temperature T ), namely the
chemical potential µ, which determines the average number of particles in the system. The
density matrix for this ensemble is given by

ρ =
1

Z
e−β(H−µN) (15)

where the partition function is
Z = Tr e−β(H−µN). (16)

Here N is a number operator which counts the total number of particles. With these defini-
tions of ρ and Z we again have

〈A〉 = Tr(ρA). (17)

To actually evaluate this trace it is convenient to use the basis consisting of eigenstates of the
operator H − µN . Note that the total number of particles in such an eigenstate is definite
(when H conserves the total number of particles), but can take an arbitrary nonnegative
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value.

In the following we will use the grand canonical ensemble. In regard to this there
are some important things that should be pointed out:

• In this ensemble the time dependence of operators is defined to be determined by the
operator H − µN , not H. This corresponds to measuring all single-particle energies
with respect to the chemical potential µ. Thus we define

A(t) ≡ ei(H−µN)tAe−i(H−µN)t. (18)

• However, to save writing we will still write this as A(t) = eiHtAe−iHt. That is, H here
will be implicitly understood to represent the operator H − µN .

• Similarly, instead of writing e−β(H−µN) we will write e−βH .

• Finally, the eigenstates of the operator H−µN (which we write as H!) will be written
as |n〉 and the eigenvalues will be written as En. Thus we write

H|n〉 = En|n〉. (19)

As already mentioned above, the number of particles in such a many-body eigenstate
is definite but can take any integer value from 0 to ∞.

In summary, whenever we refer to “the Hamiltonian” and “H” in the following, we really
mean H − µN . (This is also what is done in the texts by Coleman and by Bruus and
Flensberg when using the grand canonical ensemble.)

2.3 Some other forms of the Green functions

The Green functions defined so far are called space-time Green functions, because they
involve the creation and annihilation of particles at definite locations in space and time.
We can also define analogous Green functions in other bases than the spatial one (more
precisely, space-spin basis when the particles have spin). For example, it will in many
problems, especially those which are translationally invariant in space, be convenient to study
Green functions which involve creation/annihilation of particles in a definite momentum
state characterized by a momentum k. Depending on the problem at hand, other Green
functions, involving creation/annihilation of particles in other types of single-particle states,
may also be useful. (For example, if the particles move in some external potential U(x) it
may be convenient to define Green functions which create/annihilate particles in eigenstates
of p2/2m+ U(x)). Finally, it is also interesting to Fourier transform the Green functions in
the time-frequency domain (Sec. 2.3.4).
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2.3.1 Transformations to other bases

To relate these alternative Green functions to the space-time Green functions already defined,
we need to know how to transform between bases. Thus we give a short repetition/summary
of how to do this. Consider a basis |ν〉 (e.g. |ν〉 = |k, σ〉). We may write

|x〉 =
∑
ν

|ν〉〈ν|x〉 =
∑
ν

〈x|ν〉∗|ν〉 =
∑
ν

φ∗ν(x)|ν〉, (20)

where φν(x) ≡ 〈x|ν〉 is the single-particle wavefunction in the state |ν〉. Writing |x〉 =
ψ†(x)|0〉 and |ν〉 = c†ν |0〉 (where |0〉 is the “vacuum” state containing no particles at all)
we then have the following relation between the creation operators in the x-basis and the
ν-basis:

ψ†(x) =
∑
ν

φ∗ν(x)c†ν . (21)

Taking the hermitian conjugate of this gives the relation between the corresponding annihi-
lation operators:

ψ(x) =
∑
ν

φν(x)cν . (22)

The most relevant example is when |ν〉 = |k, σ〉. Then

ψ†(x) = ψ†σ(r) =
∑
k,σ′

φ∗k,σ′(r, σ)︸ ︷︷ ︸
φk(r)δσ,σ′

c†k,σ′ =
∑
k

φ∗k(r)c†kσ =
1√
Ω

∑
k

e−ik·rc†k,σ (23)

and thus also

ψσ(r) =
∑
k

φk(r)ckσ =
1√
Ω

∑
k

eik·rck,σ. (24)

Here, to arrive at the last expressions in (23) and (24) we have taken the particles to live in
a system which is a 3D cube of volume Ω with periodic boundary conditions, so

φk(r) =
1√
Ω
eik·r. (25)

2.3.2 Green functions in other bases

We will illustrate how Green functions in different bases are related by looking at the retarded
single-particle Green function. We have

GR(x, t;x′t′) = −iθ(t− t′)〈[ψ(x, t), ψ†(x′, t′)]±〉
= −iθ(t− t′)

∑
νν′

φν(x)φ∗ν′(x
′)〈[cν(t), c†ν′(t

′)]±〉

=
∑
νν′

φν(x)φ∗ν′(x
′)GR(ν, t; ν ′, t′), (26)

where we have defined the single-particle retarded Green function in the ν-basis as

GR(ν, t; ν ′, t′) = −iθ(t− t′)〈[cν(t), c†ν′(t
′)]±〉. (27)
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2.3.3 k-space Green function in translationally invariant systems

In a system which is translationally invariant in space, the space-time Green functions can
not depend on r and r′ separately, but only on their difference r− r′. In these systems it is
natural to consider the k-space Green function G(k, σ, t;k′σ′, t′), as it becomes diagonal in
the k indices. This can be seen from (26), (23) and (24). We have

GR(x, t;x′, t′) = G(r, σ, t; r′, σ′, t′) =
1

Ω

∑
k,k′

eik·re−ik
′·r′GR(k, σ, t;k′, σ′, t′)

=
1

Ω

∑
k,k′

eik·(r−r
′)ei(k−k

′)·r′GR(k, σ, t;k′, σ′, t′). (28)

As the lhs only depends on r−r′, the dependence on r′ on the rhs must vanish, which means
that the k-space Green function is nonzero only when k = k′, i.e. GR(k, σ, t;k′, σ′, t′) =
δk,k′G

R(k;σ, t;σ′, t′). Thus we get

GR(r − r′, σ, t;σ′, t′) =
1

Ω

∑
k

eik·(r−r
′)GR(k;σ, t;σ′, t′) (29)

where
GR(k;σ, t;σ′, t′) = −iθ(t− t′)〈[ck,σ(t), c†k,σ′(t

′)]±〉. (30)

2.3.4 Fourier transformed Green functions (in the time-frequency domain)

If the Hamiltonian does not depend explicitly on time, i.e. the Hamiltonian is translationally
invariant in time, the Green functions will not depend on t and t′ separately, but only on the
difference t − t′. It is then convenient to Fourier transform the Green function in the time
variable. This Fourier transform and its inverse are defined as

G(t) =
1

2π

∫ ∞
−∞

dω e−iωtG(ω), (31)

G(ω) =

∫ ∞
−∞

dt eiωtG(t). (32)

(Here we have suppressed all other variables than the time/frequency variables in the nota-
tion.)

2.4 Example: Green function for noninteracting electrons

We will now calculate the k-space Green functions for noninteracting electrons. In this case,
the Hamiltonian is given by

H =
∑
k,σ

ξkc
†
k,σck,σ (33)

where ξk = εk − µ and µ is the chemical potential. Because H is diagonal in k and σ (the
former property is due to the system being translationally invariant in space, as there is no
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external potential in the Hamiltonian), the Green functions will also be diagonal in k and
σ. Taking this into account we consider the retarded Green function

GR
0 (k, σ; t− t′) = −iθ(t− t′)〈{ckσ(t), c†kσ(t′)}〉. (34)

The subscript 0 on the Green function refers to the noninteracting nature of the Hamiltonian.
To calculate the Green function we need to work out the time dependence of the fermion

operators. Since
ckσ(t) = eiHtckσe

−iHt, (35)

we have
dckσ(t)

dt
= i[H, ckσ(t)] = ieiHt [H, ckσ]︸ ︷︷ ︸

−ξkckσ

e−iHt = −iξkckσ(t). (36)

Integrating this differential equation gives

ckσ(t) = e−iξktckσ, (37)

c†kσ(t) = eiξktc†kσ. (38)

We see that the time dependence of the operators is very simple for noninteracting electrons.
We now get for the greater Green functions:

G>
0 (k, σ, t− t′) = −ie−iξkteiξkt′〈ckσc†kσ〉 = −ie−iξk(t−t′)(1− 〈nkσ〉)

= −ie−iξk(t−t′)(1− nF (ξk)), (39)

where

nF (ω) ≡ 1

eβω + 1
(40)

is the Fermi-Dirac distribution function. At zero temperature this becomes nF (ω) = θ(−ω),
hence a state k is occupied if εk < µ and empty if εk > µ.

The calculation of the lesser Green function is very similar:

G<
0 (k, σ, t− t′) = +i〈c†kσ(t′)ckσ(t)〉 = ieiξkt

′
e−iξkt〈c†kσckσ〉 = ie−iξk(t−t

′)nF (ξk). (41)

The retarded Green function can then be found from (9), which gives

GR
0 (k, σ, t− t′) = −iθ(t− t′)e−iξk(t−t′). (42)

Let us next consider the Fourier transform of this function, defined in (32):

GR
0 (kσ, ω) = −i

∫ ∞
−∞

dt eiωtθ(t)e−iξkt = −i
∫ ∞
0

dt ei(ω−ξk)t. (43)

To make the integral converge at the upper limit we let ω → ω + iη where η = 0+ is a
positive infinitesimal. This gives

GR
0 (kσ, ω) =

1

ω − ξk + iη
. (44)
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We note that this Green function, considered as a function of ω for fixed k, has a pole at
ω = ξk− iη, i.e. at the excitation energy ξk of the system, except that the pole is just shifted
infinitesimally off the real axis in the complex ω-plane and down into the lower half-plane.
Thus the Fourier transform of the retarded Green function has the following properties: it
is analytic in the upper half-plane, and the location of its poles (all in the lower half-plane)
offer information about the excitation energies of the system. In the next section we will see
that these are general features of the Fourier transform of the retarded Green function.

2.5 The Lehmann representation

We will now consider the “diagonal” (i.e. evaluated for ν ′ = ν) Green functionGR(ν, t; ν, t′) ≡
GR(ν; t, t′) = GR(ν; t− t′) for the fermionic case and derive what is called the Lehmann (or
spectral) representation for its Fourier transform GR(ν;ω). We start with

G>(ν; t, t′) = −i〈cν(t)c†ν(t′)〉. (45)

Next we write the explicit expressions for the average 〈· · · 〉 and for the time dependence
of the operators. The trace involved in the average (see (17)) will be evaluated using the
complete set of eigenstates {|n〉} of H and the associated eigenvalues En. We also insert a
resolution of the identity in terms of these eigenstates, i.e. I =

∑
m |m〉〈m| inbetween the

operators cν(t) and c†ν(t
′). (Note that although we don’t know what these eigenstates are,

we know that they exist, which is sufficient here.) This gives

G>(ν; t, t′) = −i 1

Z

∑
n

e−βEn〈n|cν(t)c†ν(t′)|n〉

= − i

Z

∑
n,m

e−βEn〈n|eiHtcνe−iHt|m〉〈m|eiHt
′
c†νe
−iHt′|n〉

= − i

Z

∑
n,m

e−βEnei(En−Em)(t−t′) 〈n|cν |m〉︸ ︷︷ ︸
〈m|c†ν |n〉∗

〈m|c†ν |n〉

= − i

Z

∑
n,m

e−βEnei(En−Em)(t−t′)|〈m|c†ν |n〉|2. (46)

Following exactly the same steps to calculate G<(ν; t, t′) = i〈c†ν(t′)cν(t)〉, we get

G<(ν; t, t′) =
i

Z

∑
n,m

e−βEnei(Em−En)(t−t
′)|〈n|c†ν |m〉|2

=
i

Z

∑
n,m

e−βEmei(En−Em)(t−t′)|〈m|c†ν |n〉|2 (47)

where in the last expression we interchanged the names of the dummy summation variables
n, m. This gives

GR(ν; t− t′) = θ(t− t′)[G>(ν; t, t′)−G<(ν; t, t′)]

= −iθ(t− t′) 1

Z

∑
n,m

(
e−βEn + e−βEm

)
ei(En−Em)(t−t′)|〈m|c†ν |n〉|2. (48)
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The Fourier transform of this is

GR(ν, ω) =

∫ ∞
−∞

dt eiωtGR(ν, t)

= − i

Z

∑
n,m

(
e−βEn + e−βEm

)
|〈m|c†ν |n〉|2

∫ ∞
−∞

dt θ(t)ei(ω+En−Em)t

= − i

Z

∑
n,m

(
e−βEn + e−βEm

)
|〈m|c†ν |n〉|2

∫ ∞
0

dt ei(ω+En−Em+iη)t, (49)

i.e.,

GR(ν, ω) =
1

Z

∑
n,m

|〈m|c†ν |n〉|2

ω + En − Em + iη

(
e−βEn + e−βEm

)
. (50)

In this calculation we again let ω → ω+ iη (where η = 0+) to make the integral convergent.
Eq. (50) is the Lehmann representation of GR(ν, ω). One can see that the singularities of
GR(ν, ω) are poles located infinitesimally below the real axis at ω = Em−En− iη (this pole
exists provided the matrix element 〈m|c†ν |n〉 6= 0). Hence from the poles of GR(ν, ω) one
can obtain information about the excitation energies Em − En associated with eigenstates
|m〉 and |n〉 which are connected through the creation operator c†ν , i.e. eigenstates for which
the state |m〉 has a finite overlap with the state c†ν |n〉. Here, clearly the eigenstate |m〉 has
a single particle more than the eigenstate |n〉. Thus GR(ν, ω) gives information about the
single-particle excitation spectrum.

2.6 The spectral function

In this section we will discuss a very important quantity called the (single-particle) spectral
function A(ν, ω), which is essentially the imaginary part of GR(ν, ω),2

A(ν, ω) ≡ − 1

π
Im GR(ν, ω). (51)

Using Eq. (50) and the fact that, for η = 0+ and real x,

Im
1

x+ iη
= − η

x2 + η2
= −πδ(x), (52)

we find that

A(ν, ω) =
1

Z

∑
n,m

|〈m|c†ν |n〉|2
(
e−βEn + e−βEm

)
δ(ω + En − Em). (53)

It can be shown that GR(ν, ω) can be expressed in terms of the spectral function as follows:

GR(ν, ω) =

∫
dω′

A(ν, ω′)

ω − ω′ + iη
. (54)

2The prefactor −1/π in (51) is a common, although not unique, convention. Some authors instead take
the prefactor to be −2, which leads to factors of 2π differences in some of the following expressions.
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A similar relation holds with GR(ν, ω) replaced by the advanced Green function GA(ν, ω) on
the lhs and with +iη replaced by −iη on the rhs. From this one concludes that the Fourier
transforms of the retarded and advanced Green functions are simply complex conjugates of
each other (for real values of ω): GA(ν, ω) = [GR(ν, ω)]∗. One can also show that

iG>(ν, ω) = 2π A(ν, ω)[1− nF (ω)], (55)

−iG<(ν, ω) = 2π A(ν, ω)nF (ω), (56)

which are known as the fluctuation-dissipation theorem for the fermionic single-particle Green
functions. The proofs of Eqs. (54)-(56) will be left to a tutorial.

In the following we will for concreteness take ν = (k, σ).

2.6.1 Sum rule and physical interpretation

We will next show that the spectral function A(kσ, ω) satisfies∫ ∞
−∞

dω A(kσ, ω) = 1. (57)

The proof goes as follows:∫ ∞
−∞

dω A(kσ, ω) =
1

Z

∑
m,n

|〈m|c†kσ|n〉|
2
(
e−βEn + e−βEm

) ∫ ∞
−∞

dω δ(ω + En − Em)︸ ︷︷ ︸
1

=
1

Z

∑
m,n

|〈m|c†kσ|n〉|
2
(
e−βEn + e−βEm

)
=

1

Z

∑
m,n

〈m|c†kσ|n〉〈n|ckσ|m〉
(
e−βEn + e−βEm

)
=

1

Z

∑
n,m

[
e−βEn〈n|ckσ|m〉〈m|c†kσ|n〉+ e−βEm〈m|c†kσ|n〉〈n|ckσ|m〉

]
=

1

Z

[∑
n

e−βEn〈n|ckσc†kσ|n〉+
∑
m

e−βEm〈m|c†kσckσ|m〉

]
=

1

Z

∑
n

e−βEn〈n| (ckσc†kσ + c†kσckσ)︸ ︷︷ ︸
={ckσ ,c†kσ}=1

|n〉 =
1

Z

∑
n

e−βEn︸ ︷︷ ︸
=Z

= 1. (58)

Eq. (57) is an example of a sum rule. A sum rule is an exact result for the frequency in-
tegral of a certain frequency-dependent quantity (typical examples being spectral functions
of retarded Green functions, like A(kσ, ω)). In actual calculations for real systems, one is
usually only able to get approximate results for such quantities, which may not satisfy the
sum rule exactly. In such cases the extent to which the sum rule is approximately satisfied
can be a useful measure of the quality of the approximations made.

The property (57) together with the fact that A(kσ, ω) ≥ 0 (which can be seen from (53))
suggests that A(kσ, ω) can be interpreted as a probability density. One can say (somewhat
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loosely speaking for the general interacting case) that A(kσ, ω)dω is the probability that a
fermion with momentum k has an energy in an infinitesimal energy window dω about ω.

2.6.2 Spectral function for noninteracting fermions and Fermi liquids

Let us now investigate A(kσ, ω) for a system of noninteracting fermions. We already calcu-
lated the retarded Green function for this case, GR

0 (kσ, ω), in Eq. (44). It follows that the
associated spectral function is a delta function,

A0(kσ, ω) = δ(ω − ξk). (59)

Thus in this case the spectral function is nonzero only if the argument ω equals ξk, which is
the energy of a particle with quantum numbers (k, σ) appearing in H0. Therefore the energy
of the particle is known with certainty when the momentum is given. This certainty is a
reflection of the fact that in the noninteracting system, the many-body wavefunction is simply
given by a single Slater determinant involving products of single-particle wavefunctions
φkσ(r) with associated energy ξk = εk − µ. [It should be noted that for any quadratic
Hamiltonian of the form H0 =

∑
ν ξνc

†
νcν one finds the same result, i.e. A0(ν, ω) = δ(ω−ξν),

so there’s nothing special about choosing ν = (k, σ) here.]
In a large class of systems of interacting fermions, known as Fermi liquids, the spectral

function can be written

A(kσ, ω) ≈ Zk

π

(1/2τk)

(ω − ξ∗k)2 + (1/2τk)2
+ Aincoherent(kσ, ω). (60)

Here τk is a lifetime, ξ∗k is a renormalized energy, and Zk is a constant which is a positive
number between 0 and 1. Compared to the noninteracting case, there is still a peak in the
spectral function, represented by the first term in (60). However, the peak is now a Lorentzian
instead of a delta function. Also, the width of the peak has broadened, the area under the
peak has decreased (from 1 to Zk), and the single-particle energies are renormalized. There
is also an additional term Aincoherent(kσ, ω) representing a continuum (i.e. not a peak) which
must be there if Zk 6= 1 for the sum rule (57) to be satisfied.

A finite (i.e. not infinite) lifetime3 τk reflects the fact that in the presence of interactions
the many-body wavefunction is a sum of many Slater determinants, which can be thought of
as resulting from the fact that the interactions make the fermions scatter between different
single-particle states φkσ(r) (i.e. states with different k’s); the lifetime τk is thus a measure
of the time between such scattering events. In a Fermi liquid, 1/τk approaches zero very fast
as |k| approaches the Fermi momentum kF . As a consequence, fermions close to the Fermi
surface scatter very little, which can be shown to imply that treating them as essentially
noninteracting is still qualitatively correct for many purposes. This is a very significant
result since many experimentally measurable properties are at low temperatures essentially
determined by the fermions at or near the Fermi surface. These properties are therefore not
qualitatively changed by the electron-electron interactions.

The entities having energy ξ∗k and lifetime τk are called quasi-particles. As already
noted, fermion systems in which this picture holds are called Fermi liquids, and the theory

3Note that in the limit τk →∞ the first term in the spectral function again becomes a delta function.
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describing them is known as Fermi liquid theory (which was first developed phenomenologi-
cally by Landau around 1957 and was subsequently given a microscopic foundation through
the use of many-body perturbation theory in the following years).

We note that the identification and investigation of interacting fermionic systems which
do not obey Fermi liquid theory is an important research question in current many-body
physics. Such non-Fermi liquids by definition have a spectral function which can not be
approximated by the form (60) and as a result they can therefore not be qualitatively un-
derstood in terms of a picture of noninteracting fermions. One prominent example of a
non-Fermi liquid is the so-called Luttinger liquid which occurs in one spatial dimension.

2.6.3 Relation to momentum distribution (through weighted sum over ω) and
to density of states (through sum over k)

We will next find an exact expression for the quantity n̄ν ≡ 〈c†νcν〉 in terms of a (weighted)
frequency integral of the spectral function A(ν, ω). We have

n̄ν ≡ 〈c†νcν〉 = −iG<(ν, t = 0) =
1

2π

∫ ∞
−∞

dω eiω·0︸︷︷︸
=1

· (−i)G<(ν, ω)︸ ︷︷ ︸
=2πA(ν,ω)nF (ω)

=

∫ ∞
−∞

dω A(ν, ω)nF (ω), (61)

where we used (56). When ν = (kσ) this gives a relation between the momentum distribution
function n̄kσ ≡ 〈c†kσckσ〉 and A(kσ, ω):

n̄kσ =

∫ ∞
−∞

dω A(kσ, ω)nF (ω). (62)

For a noninteracting system this gives n̄kσ =
∫∞
−∞ dω δ(ω − ξk)nF (ω) = nF (ξk).

Another important quantity is the single-particle density of states D(ω) which is essen-
tially the spectral function A(k, ω) summed over all k:

D(ω) =
1

Ω

∑
k,σ

A(kσ, ω). (63)

The spectral function A(k, ω) can be measured experimentally by tunneling spectroscopy
(in this technique the differential conductance dI/dV at low temperatures gives informa-
tion about the density of states D(ω)) and Angle Resolved Photo-Emission Spectroscopy
(ARPES). For details see Bruus and Flensberg, Ch. 8.4 and Coleman Ch. 10.7.2 and 10.7.3.

3 Imaginary-time (Matsubara) Green functions

3.1 Motivation

In most interacting systems, calculating physically interesting quantities like e.g. retarded
Green functions and associated spectral functions is highly nontrivial and can usually only be
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accomplished approximately, e.g. in terms of many-body perturbation theory. For technical
reasons it is useful to introduce what is known as imaginary-time Green functions,
as it turns out that direct calculations of the retarded Green functions are impractical at
finite temperatures. As we will see there is a rather simple mathematical relation between
the imaginary-time Green functions and the retarded Green functions which allows one to
obtain the latter from the former. In this section we develop these results for the case of
single-particle Green functions, again focusing mainly on the fermionic case. The imaginary-
time formalism is sometimes also referred to as the Matsubara formalism, and we will use
these two names interchangeably.4

3.2 Imaginary-time single-particle Green function

The imaginary-time (or Matsubara) single-particle Green function is defined as

G(ν, τ ; ν ′, τ ′) ≡ −〈Tτ (cν(τ)c†ν′(τ
′))〉. (64)

Here τ and τ ′ are real parameters satisfying 0 < τ, τ ′ < β where β = 1/kBT as usual. The
time dependence of operators in the imaginary-time formalism is defined as

A(τ) ≡ eHτAe−Hτ , (65)

A†(τ) ≡ eHτA†e−Hτ . (66)

Compared to the usual real-time evolution defined in terms of the operators e±iHt, it is as
if we had set it = τ . Since τ is real, this corresponds to t being imaginary; hence the name
“imaginary-time.” Note that τ being real means that e±τH are not unitary. This has the
important implication that

A†(τ) 6= (A(τ))†. (67)

Thus (65) and (66) are independent definitions and are not each other’s adjoints, unlike the
case for unitary real-time evolution.

The symbol Tτ in (64) is a time ordering operator which puts the operators in chronologi-
cal order, with the earliest times furthest to the right, according to the following prescription:

T (cν(τ)c†ν′(τ
′)) ≡

{
cν(τ)c†ν′(τ

′) if τ > τ ′

εc†ν′(τ
′)cν(τ) if τ ′ > τ.

(68)

Here ε = −1 if the c’s are fermion operators and ε = +1 if they are boson operators. Thus in
the fermionic case a minus sign is introduced upon interchanging the order of the operators
while in the bosonic case there is no sign change.5

When the Hamiltonian is time-independent these Green functions will only depend on
the time difference τ − τ ′ and not on τ and τ ′ individually (as was also the case for the

4There is also another formalism available which in contrast to the Matsubara formalism is only applicable
at zero temperature and is therefore called the zero temperature formalism.

5This should not be confused with the standard commutation/anticommutation properties of
bosonic/fermionic operators which in general only apply at equal times, while here the operators are evalu-
ated at different times τ and τ ′.
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real-time Green functions considered in Sec. 2). This allows us to limit our consideration
(without any loss of generality) to the function

G(ν, ν ′; τ) ≡ −〈Tτ (cν(τ)c†ν′(0))〉 (69)

where τ can now take values in the interval −β < τ < β.

3.3 Periodicities in imaginary time. Fourier series and Matsubara
frequencies

We will now show that the Matsubara Green functions obey the (anti-)periodicity conditions
(here τ < 0)

G(ν, ν ′; τ) = ∓G(ν, ν ′; τ + β) (70)

where the upper (lower) sign is for fermions (bosons). To prove (70) we use the cyclic
invariance of the trace operation,

Tr(ABC . . .XY Z) = Tr(ZAB . . .WXY ) = Tr(Y ZA . . . V WX) etc. (71)

For the fermionic case this gives (τ < 0)

G(ν, ν ′; τ) = −〈Tτ (cν(τ)c†ν′(0))〉 = 〈c†ν′(0)cν(τ)〉

=
1

Z
Tr(e−βHc†ν′e

Hτcνe
−Hτ )

=
1

Z
Tr(eHτcνe

−Hτe−βHc†ν′)

=
1

Z
Tr(e−βHeβH︸ ︷︷ ︸

=I

eHτcνe
−Hτe−βHc†ν′)

=
1

Z
Tr(e−βHeH(τ+β)cνe

−H(τ+β)c†ν′)

=
1

Z
Tr(e−βHcν(τ + β)c†ν′(0)) = 〈cν(τ + β︸ ︷︷ ︸

>0

)c†ν′(0)〉

= −G(ν, ν ′; τ + β) QED. (72)

The proof for the bosonic case is obviously very similar.
We can now use (70) twice to get G(ν, ν ′;−β) = ∓G(ν, ν ′; 0) = (∓)2G(ν, ν ′; β) = G(ν, ν ′; β).

Hence the Matsubara Green function is periodic with period 2β on the interval τ ∈ (−β, β)
and can therefore be expanded in a standard Fourier series on this interval, which can be
written as

G(ν, ν ′; τ) =
1

β

∑
n∈Z

e−iω̃nτG(ν, ν ′; iω̃n), (73)

G(ν, ν ′; iω̃n) =
1

2

∫ β

−β
dτeiω̃nτG(ν, ν ′; τ). (74)
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where the frequencies ω̃n
6 are given by ω̃n = (2πn)/(2β) = πn/β. Actually, because of the

property (70) only a certain subset of the frequency components will be nonzero. This can
be seen by splitting the integral in (74) into one over (−β, 0) and one over (0, β), using (70)
in the first region to rewrite it too as an integral over the second region, and using the fact
that e−iω̃nβ = e−iπn = (−1)n:

G(ν, ν ′; iω̃n) =
1

2

∫ 0

−β
dτ eiω̃nτ G(ν, ν ′; τ)︸ ︷︷ ︸

∓G(ν,ν′;τ+β)

+

∫ β

0

dτ eiω̃nτG(ν, ν ′; τ)


=

1

2
[∓(−1)n + 1]︸ ︷︷ ︸

∫ β

0

dτ eiω̃nτG(ν, ν ′; τ). (75)

For fermions, the bracketed quantity is 1 if n is odd and 0 if n is even, while for bosons it’s
1 if n is even and 0 if n is odd. Hence for fermions (bosons) only odd (even) values of n
contribute in the Fourier series, which makes it natural to define

ωn ≡
(2n+ 1)π

β
for fermions, (76)

ωn ≡
2nπ

β
for bosons (77)

where again n runs over all integers for both fermions and bosons. This gives our final result
for the Fourier representation of the Matsubara Green functions:

G(ν, ν ′; τ) =
1

β

∑
ωn

e−iωnτG(ν, ν ′; iωn), (78)

G(ν, ν ′; iωn) =

∫ β

0

dτ eiωnτG(ν, ν ′; τ). (79)

The frequencies ωn are known as Matsubara frequencies. Note that they depend on
temperature. They are discrete at finite temperature but become continuous in the limit of
zero temperature (β → ∞), when the spacing 2π/β between adjacent frequencies goes to
zero. It has become customary to denote fermionic Matsubara frequencies by pn or kn and
bosonic Matsubara frequencies by qn or ωn, which is a convention we will tend to follow from
now on.

3.4 The connection between imaginary-time and retarded Green
functions

We will next consider how one can obtain a retarded Green function from the corresponding
imaginary-time Green function. The key is to calculate the Fourier transform G(iωn) of the
latter; then the retarded function GR(ω) can be found from this by the substitution

iωn → ω + iη (80)

6We have put a tilde on these frequencies because we are going to define a slightly different frequency
variable ωn below.
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(where η is a positive infinitesimal), a procedure known as analytic continuation. This
result follows from a comparison of the Lehmann representations for the imaginary-time and
retarded Green functions. Since we considered the Lehmann representation for the fermionic
diagonal retarded function GR(ν, ω) ≡ GR(ν, ν;ω) in Sec. 2.5 we will here consider the
Lehmann representation for the corresponding Matsubara function G(ν, ipn) ≡ G(ν, ν; ipn).
The result (80) is however valid also for the non-diagonal case, and for bosons, and also
extends to more complicated Green functions than the single-particle one.

To calculate G(ν, ipn) we first need to find G(ν, τ). Following the same procedure as in
Sec. 2.5 we have (we consider τ > 0 only as that is sufficient to calculate G(ν, ipn))

G(ν, τ) = −〈cν(τ)c†ν(0)〉

= − 1

Z

∑
n,m

e−βEn〈n|eHτcνe−Hτ |m〉〈m|c†ν |n〉

= − 1

Z

∑
n,m

e−βEne(En−Em)τ |〈m|c†ν |n〉|2. (81)

Thus7

G(ν, ip`) = − 1

Z

∑
n,m

e−βEn|〈m|c†ν |n〉|2
∫ β

0

dτ e(ip`+En−Em)τ

= − 1

Z

∑
n,m

e−βEn|〈m|c†ν |n〉|2
e(ip`+En−Em)β − 1

ip` + En − Em

=
1

Z

∑
n,m

|〈m|c†ν |n〉|2

ip` + En − Em
(e−βEn + e−βEm), (82)

where we used that
eipnβ = −1 (83)

which follows from (76). Comparing (82) with (50) we see that indeed the Matsubara and
retarded functions are simply related by (80).

3.5 Example: Noninteracting fermions

In this section we calculate the Matsubara Green function for noninteracting fermions. The
Hamiltonian is given by

H0 =
∑
ν

ξνc
†
νcν . (84)

We denote the Matsubara function by G(0)(ν, τ); the superscript 0 reflects the fact that
the quadratic Hamiltonian is diagonal in the ν-basis; this makes the Matsubara function
diagonal too. Using that

cν(τ) = eH0τcνe
−H0τ = e−ξντcν , (85)

7Since the index n is already “taken” we write ip` instead of ipn for the Matsubara frequency here.

18



we find

G(0)(ν, τ) = −〈Tτ (cν(τ)c†ν(0)〉
= −θ(τ)〈cν(τ)c†ν(0)〉+ θ(−τ)〈c†ν(0)cν(τ)〉
= −e−ξντ [θ(τ)〈cνc†ν〉 − θ(−τ)〈c†νcν〉]
= −e−ξντ [θ(τ)(1− nF (ξν))− θ(−τ)nF (ξν)]. (86)

Thus

G(0)(ν, ipn) =

∫ β

0

dτ eipnτG(0)(ν, τ)

= −(1− nF (ξν))

∫ β

0

dτ e(ipn−ξν)τ

=
1

ipn − ξν
· (−1)(1− nF (ξν))

[
e(ipn−ξν)β − 1

]︸ ︷︷ ︸
=1

=
1

ipn − ξν
(87)

where we used (40) and (83). It is reassuring that if we now let ipn → ω + iη in this
expression to obtain the retarded Green function, we get the same result (44) as we obtained
earlier when calculating the retarded Green function directly for this case of noninteracting
fermions.

3.6 Equation of motion approach for Matsubara Green functions

We will now develop an equation of motion approach to find the Matsubara single-particle
Green function. This involves differentiating the Matsubara Green function with respect to
τ , which will lead us to a differential equation obeyed by this function. We will see that for
the case of quadratic Hamiltonians the differential equation is relatively simple in that it
only involves single-particle Green functions. This differential equation can be transformed
into an algebraic equation by Fourier transformation, for which a solution can be found in
the form of an infinite series.

3.6.1 General Hamiltonians

Let us start by considering a fermionic system with a completely general Hamiltonian H
and the Matsubara Green function G(ν, ν ′; τ) where ν is some arbitrary basis:

G(ν, ν ′; τ) = −〈Tτ (cν(τ)c†ν′(0))〉. (88)

Differentiating this with respect to τ gives

d

dτ
G(ν, ν ′; τ) = − d

dτ

[
θ(τ)〈cν(τ)c†ν′(0)〉 − θ(−τ)〈c†ν′(0)cν(τ)〉

]
= −δ(τ)〈(cν(τ)c†ν′(0) + c†ν′(0)cν(τ))︸ ︷︷ ︸

=δνν′ (τ=0)

〉 −
[
θ(τ)〈 d

dτ
cν(τ)c†ν′(0)〉 − θ(−τ)〈c†ν′(0)

d

dτ
cν(τ)〉

]

= −δ(τ)δνν′ −
[
θ(τ)〈[H, cν(τ)]c†ν′(0)〉 − θ(−τ)〈c†ν′(0)[H, cν(τ)]〉

]
, (89)
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i.e.,

− d

dτ
G(ν, ν ′; τ) = δ(τ)δνν′ + 〈Tτ ([H, cν(τ)]c†ν′(0))〉. (90)

To arrive at this result we used the equation of motion for cν(τ),

dcν(τ)

dτ
= [H, cν(τ)] (91)

which follows from (65). Note that the factor δνν′ arose due to the delta function δ(τ) which
allowed us to set τ = 0 in that term and then make use of the equal-time anticommutation
relations.

If the Hamiltonian contains nontrivial interaction terms, such as terms that are quartic in
the creation/annihilation operators (an example would be the Coulomb interaction between
electrons), the second term on the rhs of (90) will involve higher-order Green functions than
the single-particle one (e.g. two-particle Green functions). One can in turn find the equation
of motion for these which will involve Green functions of even higher order, and so on. In
order to make progress, this hierarchy of ever more complicated equations must then be
“cut off” at some level by approximating the multi-particle Green function at that level as
a product of lower-order Green functions.

In the following we will instead consider the simpler case of a quadratic Hamiltonian.
Then, as we will see, the term on the rhs of (90) involving the expectation value of the time-
ordered expression will just be another single-particle Green function. Thus in this case the
equations of motion for the single-particle Green functions will constitute a “closed” system
of equations.

3.6.2 Quadratic Hamiltonians

Assume that H is quadratic so that it can be written on the form

H =
∑
ν′ν

hν′νc
†
ν′cν (92)

which gives

[H, cν(τ)] = −
∑
ν′

hνν′cν′(τ). (93)

Inserting this into (90) one finds

− d

dτ
G(ν, ν ′; τ) = δ(τ)δνν′ +

∑
ν′′

hνν′′G(ν ′′, ν ′; τ), (94)

which is an equation of motion that only involves single-particle Green functions. Next we
separate H into its diagonal part and non-diagonal parts,

hνν′ = ξνδνν′ + vνν′ (95)

which gives (
− d

dτ
− ξν

)
G(ν, ν ′; τ) = δ(τ)δνν′ +

∑
ν′′

vνν′′G(ν ′′, ν ′; τ). (96)
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This differential equation can now be turned into an algebraic equation by introducing the
Fourier transform defined in (78)-(79). The lhs of (96) can then be written (1/β)

∑
pn

(ipn−
ξν)e

−ipnτG(ν, ν ′; ipn). Upon multiplying both sides of the equation by eipmτ and integrating
over τ from τ = 0 to τ = β, one arrives at

(ipm − ξν)G(ν, ν ′; ipm) = δνν′ +
∑
ν′′

vνν′′G(ν ′′, ν ′; ipm) (97)

where we used8

1

β

∫ β

0

dτ ei(pm−pn)τ = δmn, (98)∫ β

0

dτ eipmτδ(τ − 0+) = 1. (99)

From (87) we have ipm − ξν = (G(0)(ν; ipm))−1, so that (97) can be rewritten as

G(ν, ν ′; ipm) = G(0)(ν, ipm)δνν′ + G(0)(ν; ipm)
∑
ν′′

vνν′′G(ν ′′, ν ′; ipm). (100)

Note that the Matsubara frequency ipm is the same in all the Green functions in this equation,
which makes it a little unnecessary to carry it along. To lighten the notation we will therefore
drop it in the following.

3.6.3 Solution as perturbation series

Next we write an ansatz for the solution to Eq. (100) in the form of an infinite series,

G(ν, ν ′) =
∞∑
n=0

G(n)(ν, ν ′) (101)

where G(n) contains n powers of the non-diagonal matrix elements vνiνj . When the non-
diagonal part is zero, the solution of (100) is clearly just the unperturbed Green function,
i.e.

G(0)(ν, ν ′) = G(0)(ν)δνν′ . (102)

8Eq. (99) requires some further explanation. One can regard the delta function δ(τ) in Eq. (90) as
the limit of a Lorentzian with a finite width and centered at τ = 0. It is then clear that only half of this

function is inside the integration region, so
∫ β
0
dτ eipmτδ(τ) = 1/2. However, the result (90) is in fact not

entirely correct as it stands. If −(d/dτ)G has a delta function contribution at τ = 0, then because of the
anti-periodicity (70) it should also have delta function contributions at τ = −β and τ = β with opposite
signs from that at τ = 0. So if we integrate from 0 to β, the delta function at τ = β also gives contribution
1/2 (the minus sign in front of the delta function is cancelled by the factor eipmβ = −1 that is also in the
integrand). Thus the total contribution from the two delta functions at τ = 0 and τ = β is 2 · 1/2 = 1. We
get the same result by keeping (90) as it is (i.e. not adding to it the delta function contributions at τ = ±β)
and shifting G(τ) by an infinitesimal amount to the right. Then the center of the delta function at τ = 0
is shifted to τ = 0+ and thus it lies entirely inside the integration region, giving Eq. (99). In contrast, the
delta function at τ = β is shifted to τ = β+ and thus gives no contribution to the integral anymore.
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Inserting (101) into (100) and cancelling the zeroth order terms, one obtains the following
recursion relation by equating equal powers of vνiνj on both sides:

G(n)(ν, ν ′) = G(0)(ν)
∑
ν′′

vνν′′G(n−1)(ν ′′, ν ′) (n ≥ 1). (103)

Iterating this, one finds

G(1)(ν, ν ′) = G(0)(ν)vνν′G(0)(ν ′), (104)

G(2)(ν, ν ′) =
∑
ν1

G(0)(ν)vνν1G(0)(ν1)vν1ν′G(0)(ν ′), (105)

G(3)(ν, ν ′) =
∑
ν1,ν2

G(0)(ν)vνν1G(0)(ν1)vν1ν2G(0)(ν2)vν2ν′G(0)(ν ′), (106)

and, for general n,

G(n)(ν, ν ′) =
∑

ν1,...,νn−1

G(0)(ν)vνν1G(0)(ν1) . . .G(0)(νn−1)vνn−1ν′G(0)(ν ′). (107)

Thus in G(n) there are n + 1 factors of G(0), n factors of vνiνj , and n − 1 summations over
intermediate states νi.

4 Electrons in a disordered potential

4.1 Motivation

In this section we will consider the problem of electrons in a disordered potential. This
is relevant to impurity scattering in a metal, which gives a contribution to the resistivity
of the metal. However, calculating the resistivity is a problem involving two-particle Green
function (the conductivity, which is the inverse of the resistivity, involves the current-current
correlation function which is a two-particle retarded Green function). In this section we will
focus on the simpler problem of studying the single-particle Green function. In fact, what we
will eventually end up studying is an averaged version of this Green function, in which the
positions of all the (randomly located) impurities have been averaged over. The analysis of
this problem will give us our first exposure to important concepts like Feynman diagrams
and the self-energy. We will see that the impurity scattering leads to a broadening of the
spectral function (cf. the discussion in Sec. 2.6.2).

4.2 The impurity scattering Hamiltonian

We start by defining the Hamiltonian for this problem,

H = H0 + V. (108)

Here H0 is the kinetic energy of the electrons, which is diagonal in the momentum basis,

H0 =
∑
k

ξkc
†
kck (109)
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with ξk = εk − µ. (We will drop the spin, since it doesn’t play a crucial role in this problem
and thus would just be another index to drag along.) The impurity potential is represented
by V , which in first quantization is given by

V =
Ne∑
i=1

V (ri) (110)

where the sum is over all electron coordinates ri (Ne is the total number of electrons) and

V (r) =
N∑
j=1

U(r −Rj). (111)

Here U(r) is the impurity potential from the individual impurities which are located at the
positions Rj (N is the total number of impurities). Since V is a single-particle operator, its
second quantized form is, like H0, quadratic in the fermion operators, but unlike H0 it is not
diagonal in the k-basis:

V =
∑
k,k′

〈k′|V (r)|k〉c†k′ck (112)

where

〈k′|V (r)|k〉 =

∫
drφ∗k′(r)V (r)φk(r) =

1

Ω

∫
dr e−i(k

′−k)·rV (r), (113)

where we used (25). Inserting (111) gives

〈k′|V (r)|k〉 =
1

Ω

N∑
j=1

∫
dr e−i(k

′−k)·rU(r −Rj︸ ︷︷ ︸
≡r′

)

=
1

Ω

∑
j=1

∫
dr′ e−i(k

′−k)·r′U(r′)︸ ︷︷ ︸
independent of j

e−i(k
′−k)·Rj

= U(k′ − k)ρ(k′ − k) (114)

where we defined

U(k) =
1

Ω

∫
dre−ik·rU(r), (115)

ρ(k) =
N∑
j=1

e−ik·Rj . (116)

Note that all the information about the positions of the impurities lies in ρ(k).

4.3 Perturbation series solution for the single-particle Matsubara
Green function

To calculate the Green function for this problem we will make use of the equation-of-motion
approach developed in Sec. 3.6. The Hamiltonian (108) is quadratic in the fermion operators,
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so the analysis in Secs. 3.6.2 and 3.6.3 is applicable, with

ν → k, (117)

vνiνj → U(ki − kj)ρ(ki − kj). (118)

Thus, using Eqs. (101) and (107) we get (again dropping the Matsubara frequencies in the
Green functions)

G(k,k′) =
∞∑
n=0

G(n)(k,k′) (119)

G(n)(k,k′) =
∑

k1,...,kn−1

G(0)(k)U(k − k1)ρ(k − k1)G(0)(k1) · · ·

· · · G(0)(kn−1)U(kn−1 − k′)ρ(kn−1 − k′)G(0)(k′). (120)

Note that G(k,k′) is not diagonal in k. This is because the impurities make the system not
translationally invariant.

4.4 Averaging over impurity locations

G(k,k′) is a function of the locations of all the impurities. Typically, however, we are
not interested in the properties of the system for any particular impurity configuration.
Instead we are more interested in impurity-averaged properties, which are obtained
for a given quantity (e.g. the Green function) by averaging it over all possible impurity
configurations. This impurity averaging also turns out to be a valid procedure for describing
any real macroscopic system of interest for experimentally realizable temperatures, due to
a property known as self-averaging.9 Thus we will now consider how to carry out such an
impurity average for the Matsubara Green function.

The locations of the various impurities will be assumed to be independent of each other,
so that the probability distribution for the impurity configuration is simply a product of
probability distributions for the location of individual impurities, which will be taken to be
uniform in space. Hence the impurity average simply consists of averaging the positions of
the N impurities over all space. Denoting the impurity-averaged Matsubara Green function
by G(k,k′) we thus have

G(k,k′) =
N∏
i=1

(
1

Ω

∫
d3Ri

)
G(k,k′). (121)

Being simply an integral over all impurity coordinates, the impurity average is clearly a
linear operation, and can therefore be carried out for each term in the perturbation series
(101) separately (i.e. the average of the sum is the sum of the averages), giving

G(k,k′) =
∞∑
n=0

G(n)(k,k′). (122)

9If you’d like more details, see the beginning of Sec. 12.4 in Bruus & Flensberg.
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The only factors in Eq. (120) which depend on the impurity positions are the functions ρ(q).

Thus to find G(n)(k,k′) we need to calculate the quantity ρ(k − k1)ρ(k1 − k2) . . . ρ(kn−1 − k′).
In the following we will consider how to do this for the lowest orders of n.

For n = 1, we need to calculate

ρ(k − k′) =
N∏
i=1

(
1

Ω

∫
d3Ri

)
ρ(k − k′) =

N∏
i=1

(
1

Ω

∫
d3Ri

) N∑
j=1

e−i(k−k
′)·Rj

=
N∑
j=1

1

Ω

∫
d3Rj e

−i(k−k′)·Rj︸ ︷︷ ︸
δk,k′

·
∏
i 6=j

(
1

Ω

∫
d3Ri

)
︸ ︷︷ ︸

1

= Nδk,k′ . (123)

For n = 2, we need to calculate

ρ(k − k1)ρ(k1 − k′) =
N∏
i=1

(
1

Ω

∫
d3Ri

) N∑
j1=1

e−i(k−k1)·Rj1

N∑
j2=1

e−i(k1−k′)·Rj2

=
N∑
j1=1

N∑
j2=1

N∏
i=1

(
1

Ω

∫
d3Ri

)
e−i(k−k1)·Rj1e−i(k1−k′)·Rj2 . (124)

For each term in the sum we must now distinguish between whether j1 6= j2 or j1 = j2. If
j1 6= j2, N − 2 integrals give unity while the integrals over j1 and j2 give

1

Ω

∫
d3Rj1e

−i(k−k1)·Rj1
1

Ω

∫
d3Rj2e

−i(k1−k′)·Rj2 = δk,k1δk1,k′ . (125)

On the other hand, if j1 = j2, N − 1 integrals give unity while the integral over j1 = j2 gives

1

Ω

∫
d3Rj1 e

−i(k−k1)·Rj1e−i(k1−k′)·Rj1 =
1

Ω

∫
d3Rj1e

−i(k−k′)·Rj1 = δk,k′ . (126)

Therefore

ρ(k − k1)ρ(k1 − k′) =
∑
j1,j2

[(1− δj1,j2)δk,k1δk1,k′ + δj1,j2δk,k′ ]

= (N2 −N)δk,k1δk1,k′ +Nδk,k′ . (127)

Here N2 − N = N(N − 1) can be approximated by N2 as the error introduced is of order
1/N and thus very small in the limit of a large number of impurities, which is what we’re
considering here. Furthermore the product of Kronecker deltas can be rewritten as δk,k′δk,k1 .
Hence we get

ρ(k − k1)ρ(k1 − k′) = (N2δk,k1 +N)δk,k′ . (128)

Let us also consider the n = 3 case, for which we need to calculate

ρ(k − k1)ρ(k1 − k2)ρ(k2 − k′) =

=
N∑
j1=1

N∑
j2=1

N∑
j3=1

N∏
i=1

(
1

Ω

∫
d3Ri

)
e−i(k−k1)·Rj1e−i(k1−k2)·Rj2e−i(k2−k′)·Rj3 . (129)
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The various cases we need to consider, and the delta functions obtained for each case, are:
j1 6= j2 6= j3 ⇒ δkk1δk1k2δk2k′ , j1 = j2 6= j3 ⇒ δkk2δk2k′ , j1 6= j2 = j3 ⇒ δkk1δk1k′ ,
j1 = j3 6= j2 ⇒ δk+k2,k1+k′δk1k2 , j1 = j2 = j3 ⇒ δkk′ . Doing the sums in (129) then gives

ρ(k − k1)ρ(k1 − k2)ρ(k2 − k′) = (N3δkk1δk1k2 +N2δkk2 +N2δkk1 +N2δk1k2 +N)δkk′ (130)

where we have again made approximations like N(N − 1) ≈ N2 etc and rewritten the delta
function products in order to show that all terms contain a δkk′ .

4.5 Impurity-averaged Matsubara Green function: Perturbation
series and Feynman diagrams

Each of the terms in the impurity averages will give rise to a term in the perturbation
expansion for the Green function. Let us first note that all impurity averages we calculated
contain a factor δkk′ , and this is true also for higher orders of n. Thus in contrast to the
original Green function G(k,k′), the impurity-averaged Green function is diagonal in k:
G(k,k′) = G(k)δkk′ . This is a consequence of the fact that impurity averaging makes the
system translationally invariant: The electrons see the same average environment everywhere
in the system. The k-diagonality is an important simplification resulting from the impurity
average.

Apart from this, however, performing the impurity average may not appear at first sight
to have made life much easier. It is clear from the averages we have just calculated that the
number of terms at a given order, as well as the complexity and diversity of those terms,
increase with the order n. How can we keep track of, and make sense of, this proliferation of
ever more complicated terms? We will now introduce a graphical representation of the terms
in the perturbation expansion for G(k) which will be a crucial aid in this task. Thus, each
term will be represented by a diagram (conventionally referred to as a Feynman diagram),
and there will be specific rules (so-called Feynman rules) for translating the diagram version
of the term into its corresponding mathematical expression (and vice versa). The diagrams
will give us an intuitive physical interpretation of the terms in the perturbation expansion.
In the beginning, as one familiarizes oneself with these concepts, one will need to start with
the mathematical expressions and construct the diagrams from them. However, as one gains
more experience one will be able to generate the diagrams first and then translate them into
expressions, which will save a lot of time in the analysis.

4.5.1 Feynman rules for diagrams contributing to G(n)(k)

By investigating the terms in the perturbation expansion for the impurity-averaged Green
function, one can deduce the following Feynman rules.

Each diagram has

• n+ 1 directed full lines (representing electrons) laid end to end

• n directed dashed lines (representing interactions), which end at the junction between
two electron lines, and begin at one of
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• m ≤ n crosses (representing impurities).

Both the full (electron) lines and the dashed (interaction) lines are labelled by momenta. To
generate all diagrams for a given m one connects the n interaction lines with the m crosses in
all possible topologically different ways. One carries out this procedure for each m satisfying
1 ≤ m ≤ n.

For a given diagram, the Feynman rules are:

• For each electron line of momentum k′, associate a factor G(0)(k′). The leftmost and
rightmost electron lines both have momentum k.

• For each interaction line of momentum q, associate a factor U(q).

• For each impurity cross, associate a factor N .

• At each electron vertex (junction between two electron lines and an interaction line),
the momentum of the outgoing electron line must equal the sum of the momentum of
the incoming electron line and the momentum of the incoming interaction line. I.e.
there is momentum conservation at each electron vertex.

• At each impurity vertex (cross) the sum of the momenta of the connected outgoing
interaction lines must equal zero. I.e. there is momentum conservation at each impurity
vertex.

• Sum over all momenta that are left undetermined by momentum conservation.

4.5.2 Low-order Feynman diagrams

To illustrate these rules, we write down the expressions for all the terms in the series for
orders n = 1, 2, and 3. At each order n, these are obtained simply by inserting the results
for the impurity average at that order (calculated in the previous section) into Eq. (120).
We list the terms in the same order as we listed the terms in the impurity averages in the
previous section. The corresponding Feynman diagrams are shown in Fig. 1. You should
make sure you understand how to translate between the series and the diagrams using the
Feynman rules.10

For n = 1 we only have one term:

G(0)(k)NU(0)G(0)(k) (term 1) (131)

For n = 2 there are two terms:

G(0)(k)NU(0)G(0)(k)NU(0)G(0)(k) (term 2a) (132)∑
k1

G(0)(k)NU(k − k1)G(0)(k1)U(k1 − k)G(0)(k) (term 2b) (133)

10Note that there is also one diagram for order n = 0. This diagram, which has not been included in Fig.
1, is just an electron line and represents G(0)(k).
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For n = 3 there are five terms:

G(0)(k)NU(0)G(0)(k)NU(0)G(0)(k)NU(0)G(0)(k) (term 3a)(134)∑
k1

G(0)(k)NU(k − k1)G(0)(k1)U(k1 − k)G(0)(k)NU(0)G(0)(k) (term 3b)(135)∑
k1

G(0)(k)NU(0)G(0)(k)NU(k − k1)G(0)(k1)U(k1 − k)G(0)(k) (term 3c)(136)∑
k1

G(0)(k)NU(k − k1)G(0)(k1)NU(0)G(0)(k1)U(k1 − k)G(0)(k) (term 3d)(137)∑
k1,k2

G(0)(k)NU(k − k1)G(0)(k1)U(k1 − k2)G(0)(k2)U(k2 − k)G(0)(k) (term 3e)(138)

In each expression we have tried to keep the order of the factors as much as possible in accor-
dance with the appearance of the corresponding diagram (this order is of course immaterial
for the actual value of the expression).

Note that some of the diagrams in the perturbation series correspond to the same math-
ematical expression. Among the diagrams shown here, this is the case for diagrams 3b and
3c.

4.6 Irreducible diagrams, the self-energy, and the Dyson equation

By inspecting the terms in the perturbation series and the corresponding diagrams, one
can see that some diagrams are composed by essentially concatenating, in various ways,
diagrams appearing at lower order in the expansion. This implies that there exist diagram-
matic “building blocks” which can be used to generate all the diagrams and thus the entire
perturbation expansion. This will lead to some very essential further simplifications.

Let us first define the concept of an irreducible diagram. This is a diagram that
cannot be cut in two pieces by only cutting a single internal electron line. (The leftmost
and rightmost electron lines in a diagram are called external, all other electron lines are
called internal.) If a diagram is not irreducible it is referred to as reducible. The irreducible
diagrams in Fig. 1 are 1, 2b, 3d and 3e. All the others are reducible as they can be cut across
an internal electron line (diagram 3a can in fact be cut in two different places). The cutting
of a reducible diagram into two pieces along a single internal electron line is illustrated for
diagram (3b) in Fig. 2.

Next we define the concept of a self-energy diagram. This is an irreducible diagram
with the two external electron lines removed. Thus from Fig. 1 one finds one self-energy
diagram at first order, one at second, and two at third order. We can find a mathematical
expression for the self-energy diagram by using the Feynman rules. It is the same as that of
the irreducible diagram it was constructed from except that the two factors of G(0)(k) due
to the external lines are removed.

Finally, we define the self-energy Σ(k) as the sum of all self-energy diagrams (there
is an infinite number of such diagrams). Denoting the self-energy diagrams as Σ(i)(k),
i = 1, 2, 3, . . ., the self-energy can be written

Σ(k) =
∑
i

Σ(i)(k). (139)
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Figure 1: Feynman diagrams for G(n)(k) for orders n = 1, 2, 3. We have indicated the
momenta of the unperturbed Green functions and of the interaction lines, and the factor N
associated with each impurity.
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Figure 2: Cutting the reducible diagram (3b) into two pieces along the internal electron line
(the cut is shown as a wiggly line).

Figure 3: Self-energy up to and including terms of order n = 3.

The self-energy up to and including terms of order n = 3 is shown in Fig. 3.
An arbitrary term in G(k) can now be written on the form (convince yourself that this

is true, e.g. by looking at the diagrams in Fig. 1)

G(0)(k)Σ(i)(k)G(0)(k)Σ(j)(k)G(0)(k) · · · G(0)(k)Σ(`)(k)G(0)(k); (140)

the number of self-energy factors here can be 0, 1, 2, . . . depending on the term. Note that
there is a factor of G(0) on both sides of every self-energy factor, and that the momenta of all
Green functions and self-energy factors are the same (k). The entire perturbation expansion
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for G(k) can then be obtained by summing over all such terms and over all the self-energy
diagrams in each term:

G(k) = G(0)(k) +
∑
i

G(0)(k)Σ(i)(k)G(0)(k) +
∑
i,j

G(0)(k)Σ(i)(k)G(0)(k)Σ(j)(k)G(0)(k)

+
∑
i,j,k

G(0)(k)Σ(i)(k)G(0)(k)Σ(j)(k)G(0)(k)Σ(k)(k)G(0)(k) + · · ·

= G(0)(k) + G(0)(k)Σ(k)G(0)(k) + G(0)(k)Σ(k)G(0)(k)Σ(k)G(0)(k)

+ G(0)(k)Σ(k)G(0)(k)Σ(k)G(0)(k)Σ(k)G(0)(k) + · · ·
= G(0)(k) + G(0)(k)Σ(k)[G(0)(k) + G(0)(k)Σ(k)G(0)(k) + · · · ]. (141)

We recognize the expression inside square brackets as the expansion of G(k) itself, so that
we finally get

G(k) = G(0)(k) + G(0)(k)Σ(k)G(k). (142)

This is the Dyson equation. It is easily solved to give

G(k, ipm) =
1

(G(0)(k, ipm))−1 − Σ(k, ipm)
=

1

ipm − ξk − Σ(k, ipm)
, (143)

where we have reinstated the ipm variable which we dropped earlier.
In general the self-energy is complex. As we will see examples of later, the real part of

the self-energy gives rise to a shift in the energy ξk, while the imaginary part gives rise to a
finite lifetime.

We have no hope of finding the exact Green function, as that would require calculating
the exact self-energy as the sum of all self-energy diagrams. However, approximating the
self-energy by the sum of just a subset (finite or infinite) of all the self-energy diagrams does
give us an approximation for the Green function through the Dyson equation. Note that
even when the number of self-energy diagrams included in this way is finite (e.g. we may
include just one or two terms in the self-energy; see below), it still corresponds to summing
an infinite number of terms in the expansion for the Green function, as seen by iterating the
Dyson equation using the approximate self-energy.

4.7 Low-density weak-scattering approximation for the self-energy

We will now consider an approximation for the self-energy that is appropriate in the limit of
low impurity density nimp ≡ N/Ω and weak scattering potential U(r). In this case it suffices
to include the first two terms in the self-energy in Fig. 3. These are of first and second order
in U (as they have one and two interaction lines, respectively) and are thus the leading terms
at small U (as we’ll see soon, the reason it’s necessary to include the self-energy diagram
of second order in U is because the first order term is rather trivial and does not give rise
to a finite lifetime). They are also of first order in the impurity density nimp because they
only have one impurity cross; a self-energy diagram with m crosses will be of order nmimp.
Self-energy diagrams with more than one cross can therefore be neglected in the low-density
limit.
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To understand why each impurity cross is associated with a factor nimp, first note that
from the Feynman rules, a diagram of order n with m impurity crosses has n factors of U(qi)
and m factors of N . Let us separate out the inverse volume 1/Ω from U(q) (see Eq. (115))
by defining U(q) ≡ (1/Ω)u(q). This shows that the diagram also comes with n factors of
1/Ω. Now consider the Feynman diagrams in Fig. 1. Note that a diagram of order n with m
impurity crosses contains n−m summations over internal momenta. This is valid in general,
not just for the diagrams in this figure. We now associate one factor of 1/Ω with each of
these summations over an internal momentum; this uses up n −m of these factors.11 The
remaining m factors of 1/Ω are associated with the m impurity crosses. Thus each impurity
cross comes with a factor N/Ω = nimp.

Let us now evaluate the self-energy diagrams we will consider. We start with the first
diagram in the self-energy in Fig. 3. Using the Feynman rules it is given by

Σ(1)(k, ipn) = NU(0) = nimpu(0) ≡ nimpu (144)

where we defined u(0) ≡ u. We see that in fact this diagram depends on neither k nor ipn.
When inserted into the Dyson equation, it is seen to just correspond to a constant energy
shift ξk → ξk + Σ(1).

The second diagram in Fig. 3 is a little more complicated. It is given by

Σ(2)(k, ipn) = N
∑
k1

U(k1 − k)U(k − k1)G(0)(k1) = nimp
1

Ω

∑
k1

|u(k − k1)|2
1

ipn − ξk1

= −nimp
1

Ω

∑
k1

|u(k − k1)|2
ξk1 + ipn
ξ2k1

+ p2n
. (145)

Let us for simplicity consider a very short-ranged potential U(r), so that we may to a good
approximation neglect the momentum dependence of |u(k− k1)|2 so that this factor can be
taken outside the k1 summation. Next let us introduce the density of states

D(ξ) =
1

Ω

∑
k

δ(ξk − ξ). (146)

This gives

Σ(2)(k, ipn) = −nimpu
2

∫ ∞
−∞

dξ D(ξ)
ξ + ipn
ξ2 + p2n

. (147)

We will evaluate this integral approximately by replacing D(ξ) by its value at the Fermi level
ξ = 0 where (ξ2 + p2n)−1 is largest. In this approximation the real part of Σ(2) will vanish,
since the integrand becomes odd in ξ. We thus get

Σ(2)(k, ipn) = −ipn nimpu
2D(0)

∫ ∞
−∞

dξ

ξ2 + p2n︸ ︷︷ ︸
π/|pn|

= −iπ pn
|pn|

nimpu
2D(0) = − i

2τ
sgn(pn), (148)

where we have defined
1

τ
≡ 2π nimpu

2D(0). (149)

11Therefore each summation over an internal momentum ki can be written (1/Ω)
∑

ki
= 1/(2π)3

∫
d3ki.

32



Inserting this into the Dyson equation gives

G(k, ipn) =
1

ipn − ξk − Σ(k, ipn)
=

1

ipn − ξk − nimpu+ i
2τ

sgn(pn)
. (150)

Below we will see that the parameter τ can be interpreted as a lifetime.

4.8 The impurity-averaged retarded Green function and its spec-
tral function

We now want to find the impurity-averaged retarded Green function GR(k, ω). From Sec.
3.4 we know that it is given by

GR(k, ω) = G(k, ipn)|ipn→ω+iη. (151)

To do this analytic continuation we note that pn appears in two places in (150): in the term
ipn and in the factor sgn(pn). For the former the analytic continuation is just ipn → ω+ iη.
For sgn(pn) we first write this as a function of ipn:

sgn(pn) = sgn(Im(ipn)). (152)

Thus the analytic continuation gives, for ω real,

sgn(Im(ipn)→ sgn(Im(ω + iη)) = sgn(η) = +1, (153)

where we used that η = 0+. Thus for ω on the real axis,

GR(k, ω) =
1

ω − ξk − nimpu+ i
2τ

. (154)

Here the infinitesimal imaginary term iη in the denominator could be neglected in comparison
to the finite imaginary term i/(2τ). Let us now calculate GR(k, t), given by

GR(k, t) =
1

2π

∫ ∞
−∞

dω e−iωtGR(k, ω) =
1

2π

∫ ∞
−∞

dω
e−iωt

ω − ξk − nimpu+ i
2τ

. (155)

We can evaluate this integral using contour integration. We note that the integrand has a pole
in the lower half plane at ω = ξk+nimpu− i

2τ
. From the factor e−iωt = exp (−itReω) exp (tImω)

we see that for t < 0 we have to close the contour in the upper half plane. The contour then
encloses no poles so that according to the residue theorem the integral is zero. On the other
hand, when t > 0 we have to close the contour in the lower half plane. Using the residue
theorem, we then pick up the residue of the pole in the lower half plane, giving

GR(k, t) =
1

2π
· 2πi(−1)e−i(ξk+nimpu− i

2τ
)t (t > 0), (156)

here the (−1) comes from the contour being clockwise in this case. Thus we get

GR(k, t) = −iθ(t)e−i(ξk+nimpu)te−t/(2τ). (157)
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Thus the retarded Green function is decaying in time; the finite lifetime comes from a nonzero
imaginary part of the self-energy. There is also a shift in the energy coming from the real
part of the self-energy.

We can also find the spectral function of GR(k, ω):

A(k, ω) = − 1

π
ImGR(k, ω) =

1

π

1/2τ

(ω − (ξk + nimpu))2 + (1/2τ)2
. (158)

This is a Lorentzian peaked at ω = ξk + nimpu and with a width proportional to τ−1. These
results are interpreted as follows: The free electrons are turned into “quasi-particles” by the
impurity scattering. The quasiparticles have an energy ξ∗k = ξk + nimpu and a finite lifetime
τ .

4.9 An example of linear response theory and two-particle Green
functions: The Kubo formula for the electrical conductivity

If an electric field of magnitude E is applied to a metal, the resulting current density J is
given by

J = σE (159)

where σ is the conductivity. This is just a different way of writing Ohm’s law I = V/R;
the resistance R is proportional to the resistivity which is the inverse of the conductivity.
Eq. (159) is an example of linear response; the response (J) to the applied field (E) is
proportional to the applied field; the proportionality constant (σ) is thus an example of a
response function (cf. Sec. 1.1).

We will show that the conductivity can be expressed in terms of a retarded current-
current correlation function, which is a type of two-particle retarded Green function. The
result we will arrive at is known as the Kubo formula for the conductivity. Let us start by
considering a system with Hamiltonian H. For now this will be taken to be unspecified; the
only thing we will assume is that it is not explicitly time-dependent. (Eventually we will
take H to be given by the impurity scattering Hamiltonian (108)). Next we assume that this
system is being acted on by some external applied field. We assume that the coupling of this
applied field to the system occurs through a Hamiltonian Hext which can have an explicit
time dependence (which we don’t indicate in the notation) because the applied field can vary
with time. Furthermore we assume that Hext is turned on “infinitely slowly”, starting at
time t0 = −∞, so that at that initial time the external field was not present and the system
was then in the ground state of H. The total Hamiltonian is then

Htot = H +Hext. (160)

The state |Ψ(t)〉 of the system evolves in time according to the time-dependent Schrödinger
equation with Htot as the Hamiltonian:

i
∂

∂t
|Ψ(t)〉 = Htot|Ψ(t)〉, (161)

where we have set ~ = 1 as usual. Let us now define

|ΨH(t)〉 = eiHt|Ψ(t)〉. (162)
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One can show from (161) that the time evolution of |ΨH(t)〉 is given by

i
∂

∂t
|ΨH(t)〉 = Hext(t)|ΨH(t)〉 (163)

where we have defined
Hext(t) ≡ eiHtHexte

−iHt. (164)

Note that the time dependence of Hext(t) comes from two sources: the factors e±iHt in its
definition and the explicit time dependence of Hext itself (which we haven’t indicated in the
notation). We see from (163) that if Hext were zero, |ΨH(t)〉 would be time-independent.
Eq. (163) can be integrated to give

|ΨH(t)〉 = |ΨH(−∞)〉 − i
∫ t

−∞
dt′Hext(t

′)|ΨH(t′)〉 (165)

where we have taken the initial time to be −∞, when the external field was zero and we
assume that the system was in the ground state of H. We will assume that Hext is linear in
the applied field. If it also were to contain terms of higher order in the applied field, those
terms can be neglected since we only want to find the leading, i.e. linear, response to the
applied field, which should be sufficient in the limit when the applied field is sufficiently weak.
Thus it is sufficient to find |ΨH(t)〉 to linear order in Hext. Since the 2nd term on the rhs in
(165) already contains a factor Hext we can therefore take Hext = 0 when evaluating |ΨH(t′)〉
in that integral, which gives [from (163)] |ΨH(t′)〉 = |ΨH(−∞)〉. Defining |ΨH(−∞)〉 = |ΨH〉
(the ground state of H) we thus get to linear order in Hext,

|ΨH(t)〉 = |ΨH〉 − i
∫ t

−∞
dt′Hext(t

′)|ΨH〉. (166)

Now let us find an expression for the expectation value of an operator o(r) in the state
|Ψ(t)〉,

O(r, t) ≡ 〈Ψ(t)|o(r)|Ψ(t)〉 = 〈ΨH(t)|eiHto(r)e−iHt|ΨH(t)〉 = 〈ΨH(t)|o(r, t)|ΨH(t)〉. (167)

Again, we just want the linear response, so inserting (166) and keeping only terms that are
first order in Hext gives

O(r, t) = 〈o(r, t)〉 − i
∫ t

−∞
dt′ 〈[o(r, t), Hext(t

′)]〉 (168)

where all the expectation values on the rhs are with respect to |ΨH〉, the ground state of H.
This is an important point: The linear response is determined by an expectation value with
respect to the unperturbed system (i.e. the system in the absence of the external applied
field). This is as far as we can get on general grounds. To make further progress we must
specify what o(r) and Hext are.

We will take o(r) to be a component of the current operator12 j(r) and Hext to be the
Hamiltonian describing how an electric field couples to the system to linear order. Let us

12Strictly speaking we mean the current density operator, but for simplicity we will refer to it as the
current operator.
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first consider the current operator. For a system of “classical” electrons it would be given
by

j(r) =
e

m

Ne∑
i=1

(pi − eA(ri))δ(r − ri). (169)

Here e is the electron charge (i.e. e = −|e| < 0), m is the electron mass, ri and pi are the
position and momentum of the i’th electron, and A is the vector potential. We are interested
in the current response to an electric field E which can be expressed in terms of the vector
potential as E = −∂A/∂t. The scalar electromagnetic potential φ is not needed and can be
set to zero.

In “first quantization” the current operator can be written

j(r) = jP (r) + jD(r) (170)

where

jP (r) =
e

2m

∑
i

[piδ(r − ri) + δ(r − ri)pi], (171)

jD(r) = −e
2

m

∑
i

A(ri)δ(r − ri). (172)

Here we have separated the current operator into a “paramagnetic” and “diamagnetic” part
(this could have been done already in the classical expression above). In these expressions ri
and pi are quantum-mechanical operators (ri → ri, pi → −i∇i). Since they don’t commute
their order matters. This is why in jP (r) they appear in a symmetrized way; this is necessary
for jP (r) to be a Hermitian operator.

In “second quantization” these current operators can be shown to be given by

jP (r) = − ie

2m

∑
σ

(
ψ†σ(r)∇ψσ(r)− [∇ψ†σ(r)]ψσ(r)

)
, (173)

jD(r) = −e
2

m
A(r)

∑
σ

ψ†σ(r)ψσ(r), (174)

where ψ†σ(r) and ψσ(r) respectively create and annihilate an electron with spin projection
σ at position r.

Next let us consider how the vector potential enters the Hamiltonian. This happens
through the term ∑

i

1

2m
(pi − eA(ri))

2. (175)

This form is valid in both classical mechanics and quantum mechanics, if one interprets ri
and pi appropriately (i.e. as operators in the latter case). In second quantization this term
becomes

1

2m

∑
σ

∫
dr ψ†σ(r)(−i∇− eA(r))2ψσ(r). (176)
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From this Hext can be extracted as the part that is linear in A. This gives

Hext = −
∫
drjP (r) ·A(r) = −

∫
dr

∑
β=x,y,z

jPβ (r)Aβ(r). (177)

Now we take o(r) = jα(r) in (168) where α = x, y, or z. Inserting our expressions for
the current operators and Hext gives

Jα(r, t) = 〈jα(r, t)〉 − i
∫ t

−∞
dt′ 〈[jα(r, t),−

∫
dr′

∑
β=x,y,z

jPβ (r′, t′)Aβ(r′, t′)]〉. (178)

Here we have also introduced the explicit time dependence of A (which we haven’t indicated
earlier in order not to clutter the notation). However, this is not yet the linear response result.
First of all, since the commutator already contains an explicit factor of A, we can omit the
diamagnetic part of jα(r, t) since it would lead to a contribution that is quadratic in A.
Thus we can replace jα(r, t) → jPα (r, t) in the commutator. Second, 〈jα(r, t)〉 = 〈jDα (r, t)〉
since 〈jPα (r, t)〉 = 0 (because there is no current in the absence of an electric field). We also
use that

〈
∑
σ

ψ†(r, t)ψσ(r, t)〉 = n(r), (179)

where n(r) is the electron density at the point r (the expectation value is time-independent
since H is time-independent). Furthermore, we can extend the upper limit in the t′ integra-
tion to ∞ by introducing a factor θ(t− t′) into the integrand. This gives

Jα(r, t) = −
∑
β

∫ ∞
−∞

dt′
∫
dr′ΠR

αβ(r, r′; t− t′)Aβ(r′, t′)− e2

m
n(r)Aα(r, t), (180)

where we have introduced the retarded current-current correlation function

ΠR
αβ(r, r′; t− t′) = −iθ(t− t′)〈[jPα (r, t), jPβ (r′, t′]〉. (181)

As indicated this correlation function depends only on the time difference t − t′ since H is
time-independent. We now take the time Fourier transform of (180). The Fourier transform
of the time convolution is the product of the Fourier transforms of each factor, giving

Jα(r, ω) = −
∑
β

∫
dr′ΠR

αβ(r, r′;ω)Aβ(r′, ω)− e2

m
n(r)Aα(r, ω). (182)

Next, from E(r, t) = −∂A(r, t)/∂t we get, for A(r, t) = A(r, ω)e−iωt + c.c.,

E(r, t) = − ∂

∂t
(A(r, ω)e−iωt + c.c.) = −(−iωA(r, ω)e−iωt + c.c.) ≡ E(r, ω)e−iωt + c.c.

⇒ E(r, ω) = iωA(r, ω). (183)

Using this in (182) we can write

Jα(r, ω) =
∑
β

i

ω

[∫
dr′ΠR

αβ(r, r′;ω)Eβ(r′, ω) +
e2

m
n(r)δαβEβ(r, ω)

]
. (184)
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Finally, if we average over the impurity positions the system becomes translationally invari-
ant, and therefore

ΠR(r, r′;ω) → Π̄R(r, r′;ω) = Π̄R(r − r′, ω), (185)

n(r) → n̄(r) = n, (186)

where n = Ne/Ω is the overall electron density. If we now do a space Fourier transform
of (184), using that the Fourier transform of a convolution in space is the product of the
Fourier transforms of each factor, we get

J̄α(q, ω) =
∑
β

σαβ(q, ω)Eβ(q, ω), (187)

where the conductivity tensor is given by

σαβ(q, ω) =
i

ω

[
Π̄R
αβ(q, ω) +

ne2

m
δαβ

]
. (188)

This is our final result for the conductivity, the Kubo formula.

4.10 Calculating the conductivity from the Kubo formula

Main steps involved in the calculation of the conductivity:

1. Define an imaginary-time (Matsubara) analogue to the retarded current-current cor-
relation function:

παβ(r1, r
′
1; τ1 − τ ′1) = −〈Tτ (jPα (r1, τ1)j

P
β (r′1, τ

′
1))〉. (189)

This is easier to calculate than the retarded function. Note that this Matsubara func-
tion is bosonic in the sense that it is periodic, not anti-periodic, when the time argu-
ment is translated by β. This is related to the fact that each current operator contains
an even number (two) of fermionic operators. To get the retarded function from the
imaginary-time function, one follows the conventional recipe of analytic continuation
of the end result: iωn → ω + iη.

2. The function (189) can be expressed as

παβ(r1, r
′
1; τ1 − τ ′1) =

e2

4m2

∑
σσ′

(∇2′β −∇1′β)(∇2α −∇1α)

〈Tτ (ψσ(r2, τ2)ψσ′(r
′
2, τ
′
2)ψ

†
σ′(r

′
1, τ
′
1)ψ

†
σ(r1, τ1))〉τ ′2=τ−1 , r′2=r1

τ2=τ
−
1 ,r2=r1

, (190)

where the time-ordered expression appearing here is a two-particle Matsubara Green
function. To arrive at this result we have used that fermionic field operators that
are all under a time-ordering symbol can be moved around freely if one introduces a
minus sign every time two such field operators pass each other. (In this expression the
derivatives act before the 2-coordinates are set equal to the 1-coordinates.)
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3. Next, an important theorem called Wick’s theorem can be used to express the time-
ordered two-particle Green function in this expression as a sum of products of two
time-ordered single-particle Green functions:

〈Tτ (ψσ(r2, τ2)ψσ′(r
′
2, τ
′
2)ψ

†
σ′(r

′
1, τ
′
1)ψ

†
σ(r1, τ1))〉

= 〈Tτ (ψσ(r2, τ2)ψ
†
σ(r1, τ1))〉〈Tτ (ψσ′(r′2, τ ′2)ψ

†
σ′(r

′
1, τ
′
1))〉

− 〈Tτ (ψσ(r2, τ2)ψ
†
σ′(r

′
1, τ
′
1))〉〈Tτ (ψσ′(r′2, τ ′2)ψ†σ(r1, τ1))〉

= Gσσ(r2, τ2; r1, τ1)Gσ′σ′(r′2, τ ′2; r′1, τ ′1)− Gσσ′(r2, τ2; r′1, τ ′1)Gσ′σ(r′2, τ
′
2; r1, τ1).(191)

This is a very significant simplification. Wick’s theorem is valid when the expectation
values are with respect to a Hamiltonian that is quadratic in fermion operators, as it is
here. According to Wick’s theorem, to arrive at this expression one pairs up creation
operators with annihilation operators in all possible ways. The paired operators are
then moved so they appear next to each other. In this process a minus sign is introduced
every time two fermion operators are moved past each other. Thus the product of these
signs gives the overall sign in front of the term. Next, the expectation value in each
term factorizes into products of single-particle Green functions. Since we here have
two creation and two annihilation operators, there are two different ways to pair them,
which is why we get two terms in the sum on the rhs.

4. The first term in this expression gives, when substituted into (190), an expression
involving 〈jPα (r1, τ1)〉〈jPβ (r′1, τ

′
1)〉. This is zero because there is no current in the ab-

sence of an electric field. So only the second term in the pairing contributes to the
conductivity.

5. We now Fourier transform to wavevector and Matsubara frequency space. Since we
have reduced the problem to one involving a product of two single-particle Green
functions, we can use the perturbation expansion we developed for this function in
Sec. 4.3. Thus this product has a perturbation expansion given by the product of the
perturbation expansions for each of the two single-particle Green functions.

6. We would like to find the conductivity σαα(q = 0, ω = 0) ≡ σ, i.e. the response to
an electric field that is uniform in space and constant in time, for a system that is
isotropic in space. We can set q = 0 directly. However, because ω appears in the
denominator in (188) we cannot set ω = 0 directly. Instead we have to look at finite
ω and take the limit ω → 0. This is however what we would have done anyway, since
we first have to calculate the Matsubara function for an arbitrary iωn and then do the
analytic continuation iωn → ω + iη.

7. Next we do the impurity averaging. As for the single-particle Green function considered
earlier, each term in the resulting expansion for π̄αα(q = 0, iωn) ≡ π̄(iωn) can be
represented by a Feynman diagram. These will however look different from the ones
for the single-particle Green function and will have different Feynman rules. The
simplest diagram in this expansion is shown in Fig. 4(a) (it doesn’t have any impurity
scatterings). The upper and lower electron lines form a loop (“biting each other’s
tail”). There is conservation of momentum at each of the two vertices where the two
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electron lines meet (shown as black dots). There is also conservation of the Matsubara
frequency at each of these vertices. Note however that there is an external (bosonic)
frequency iωn at each of these two vertices which makes the (fermionic) Matsubara
frequencies of the two electron lines differ by ωn. The internal fermionic Matsubara
frequency ipn goes in a loop and so is undetermined by frequency conservation. Hence
there is a sum over ipn.

8. The impurity averaging leads to two different classes of diagrams. Some examples
of diagrams in the first class are shown in Fig. 4(b). In this class of diagrams, any
given impurity in the diagram (represented by an impurity cross) scatters only with
the upper line or only with the lower line. So any such diagram therefore contains a
product of two Green function diagrams of the type we have seen before. All these
diagrams can be summed exactly; the result is just given in terms of the product of
the full Green functions for the upper and lower line. The mathematical expression for
this sum is

2e2

3m2Ω

∑
k

k2 1

β

∑
ipn

Ḡ(k, ipn + iωn)Ḡ(k, ipn). (192)

Thus note that the Green functions in this expression are the full Green functions, not
the unperturbed (G(0)) ones. The diagrammatic representation of this term is given
in Fig. 4(c). The electron lines are drawn thick to indicate that they represent the
full Green function. For obvious reasons this diagram is frequently referred to as “the
bubble diagram”.

9. In the second class of diagrams, there are impurities which scatter with both lines.
These diagrams contain dashed interaction lines that straddle (via an impurity) both
the upper and lower electron lines. Some examples of such diagrams are shown in
Fig. 4(d). The set of these diagrams is referred to as vertex corrections. The types
of vertex correction diagrams that can appear are dictated by our approximation for
the self-energy. It turns out that for the approximation for the self-energy we used,
which gave a momentum-independent self-energy, these vertex corrections cancel for
the q = 0 conductivity we want to calculate. So it is sufficient to calculate only the
bubble diagram. This is no longer true when using a more accurate, momentum-
dependent, approximation for the self-energy, however.

10. The calculation of the bubble diagram is rather involved in itself, but won’t be described
in any detail here. The end result (after doing the analytic continuation) is that we
find a conductivity given by

σ =
ne2τ

m
(193)

where n is the electron density and τ is the lifetime defined in (149). This is of the
same form that one gets from simple (classical) Drude theory.
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5 Concluding remarks

Although in these introductory notes we have only had time to discuss one application of
the Green function formalism, namely to electrons in a disordered potential, it is important
to note that concepts and results like Feynman diagrams, the self-energy, and the Dyson
equation, continue to be valid and central in applications of this formalism to other problems
as well. For example, if one considers the problem of interacting electrons, and develops a
perturbation expansion for the single-particle Green function of this problem, each term in
the perturbation expansion can again be represented as a Feynman diagram. Although the
appearance of these diagrams, and the Feynman rules, will be different from those of the
impurity scattering problem, one can again define irreducible diagrams in exactly the same
way (i.e. as Feynman diagrams that cannot be cut into two separate pieces by only cutting
a single internal electron line) and from those one defines self-energy diagrams and then the
self-energy as the sum of all self-energy diagrams. Furthermore, the Dyson equation relating
the single-particle Green function and the self-energy continues to hold.

41



Figure 4: (a) The simplest diagram in the expansion for the Matsubara current-current
correlation function π̄(iωn). (b) Examples of diagrams in the first class. (c) Diagrammatic
representation (“the bubble diagram”) of the sum of all diagrams in the first class. (d)
Examples of diagrams in the second class (“vertex corrections”).
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