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Problem 1

Consider the Hamiltonian

H = ε(a†1a1 + a†2a2) + ∆(a†1a
†
2 + h.c.) (1)

where ε > 0 and ∆ > 0 are parameters, and a1 and a2 are fermionic op-
erators satisfying canonical anticommutation relations. Thus {ai, a

†
j} = δij

(i, j = 1, 2), and all other anticommutators involving these operators vanish.

In order to write the Hamiltonian in diagonal form we transform to a new
set c1, c2 of fermionic operators. The transformation reads

a1 = uc1 − vc†2, (2)

a2 = uc2 + vc†1, (3)

where u and v are real numbers.

(a) Use the requirement that the c-operators should also satisfy canonical
anticommutation relations to show that

u2 + v2 = 1 (4)

(to show this, it is sufficient that you calculate just one selected anticommuta-
tor). This result can be used to write u = cos θ, v = sin θ, where θ is an angle.

(b) Show that by choosing θ such that

tan 2θ =
∆

ε
(5)

the term proportional to (c†1c
†
2 + h.c.) in H vanishes.

(c) Show that with this choice, H can be written as

H = F (c†1c1 + c†2c2) +G. (6)
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Give expressions for F and G in terms of ε and ∆ (pick the positive solution
for cos 2θ).

(d) Determine the energy and degeneracy of each energy level of H. Here,
assume that the only restriction on particle numbers comes from the Pauli
principle, i.e. work in the grand canonical ensemble.

Problem 2

Consider a ferromagnet on a square lattice. The Hamiltonian is

H = −
∑
〈i,j〉

[J⊥(Sx
i S

x
j + Sy

i S
y
j ) + JzS

z
i S

z
j ]. (7)

Here Jz > 0 and we will assume that 0 ≤ J⊥ ≤ Jz. We also assume that only
nearest-neighbour sites interact with each other, so the sum is over all pairs
of nearest-neighbour sites (each such pair being counted only once).

(a) Use spin-wave theory to calculate the ground state energy E0 and the
magnon dispersion ωk (in this analysis, neglect terms describing interactions
between magnons).

(b) Show that for small |k|, the magnon dispersion can be expressed in terms
of two parameters ∆ and m as

ωk ≈ ∆ +
k2

2m
(8)

and find expressions for ∆ and m. Here ∆ is the lower bound on the magnon
energy and is called the energy gap, while m can be interpreted as a mass
(note that we have set h̄ = 1; with h̄ reinstated, the term involving m is seen
to be of the familiar kinetic energy form h̄2k2/(2m)).

(c) What is the value of ∆ in the limit J⊥ → Jz? Is this what you would
expect in view of Goldstone’s theorem? Explain.
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Problem 3

In this problem you will consider electrons in a disordered potential, as dis-
cussed in the lectures. The Hamiltonian is given by

H = H0 + V (9)

where
H0 =

∑
k

ξkc
†
kck (10)

(we drop the spin index as in the lectures) and the interaction between the
electrons and the impurities is described by

V =
∑
k,k′

U(k′ − k)ρ(k′ − k)ĉ†k′ ĉk, (11)

where

U(k) =
1

Ω

∫
dr e−ik·r U(r), (12)

ρ(k) =
N∑

j=1

e−ik·Rj , (13)

where Ω is the volume of the system, U(r − Rj) is the potential an elec-
tron at position r experiences due to the j’th impurity at position Rj, and
N is the number of impurities. In the lectures we developed a perturba-
tion expansion for the single-particle Matsubara Green function G(k,k′; ipm)
where pm is a fermionic Matsubara frequency. Upon averaging over the po-
sitions of the impurities, the resulting Green function became k-diagonal:
Ḡ(k,k′; ipm) = Ḡ(k, ipm)δk,k′ . We represented each term in the perturbation
expansion for Ḡ(k, ipm) by a Feynman diagram and established the Feynman
rules for translating between the diagrams and their associated mathematical
expressions.

(a) Suppose that you are presented with an arbitrary Feynman diagram in
the perturbation expansion for Ḡ(k, ipm). How would you identify

1. its order n (with respect to the impurity potential).

2. its dependence on the density of impurities nimp = N/Ω.

(b) Consider the two Feynman diagrams below that appear in the perturba-
tion expansion for Ḡ(k, ipm).

For each diagram:
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1. Give its mathematical expression (do not attempt to evaluate any
wavevector sums).

2. Determine whether the diagram is reducible or irreducible (justify your
conclusion). If the diagram is irreducible, draw the corresponding self-
energy diagram and give its mathematical expression.

(c) In the lectures we showed that Ḡ(k, ipm) can be expressed as

Ḡ(k, ipm) =
1

(G(0)(k, ipm))−1 − Σ(k, ipm)
=

1

ipm − ξk − Σ(k, ipm)
(14)

where Σ(k, ipm) is the self-energy, defined as the sum of all self-energy dia-
grams. We found an approximate result for Ḡ(k, ipm) by approximating the
self-energy Σ(k, ipm) as

This is called the ”first Born approximation,” which is why we have here
defined the sum of these two self-energy diagrams as Σ1B(k, ipm). In the
following we will study a different approximation to the self-energy, given by
the infinite sum of all self-energy diagrams with a single impurity cross (see
the figure below).

This is called the “full Born approximation,” which is why we have defined
this sum as ΣFB(k, ipm). Note that the first two terms in this infinite sum
constitute the “first Born approximation” Σ1B(k, ipm).
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1. Explain under what physical conditions (specified by the impurity den-
sity nimp and the strength of the scattering potential U(r)) you expect
Σ1B to be a good approximation to the full self-energy. Do the same
for ΣFB. Justify your answers.

2. Give the mathematical expression for the nth diagram in ΣFB(k, ipm),
i.e. the diagram with n interaction lines where n is an arbitrary positive
integer. (You may find it helpful to first consider the expressions for
the first few diagrams in ΣFB(k, ipm) before you consider the case of a
general n.)

3. Assume that the impurity potential U(r) is very short-ranged, so that
its Fourier transform U(k) can be approximated by a constant U , i.e.
U(k) ≡ U for all k. Show that in this case, ΣFB(k, ipm) is given by

ΣFB(k, ipm) =
NU

1− U ∑
k1
G(0)(k1, ipm)

≡ ΣFB(ipm). (15)

4. In the lectures we found that for a very short-ranged impurity potential,
the second diagram in Σ1B and ΣFB in the figures above is given by

− i

2τ1B

sgn(pm) where
1

τ1B

= 2πnimpu
2D(0). (16)

(In the lectures τ1B was just called τ .) Here u = UΩ and D(0) is a
density-of-states factor whose precise definition is unimportant here.
Use the result (16) to show that

Im ΣFB(ipm) = − 1

2τFB

sgn(pm) (17)

and give an expression for the parameter τFB.
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Formulas

Trigonometric identities:

cos 2x = cos2 x− sin2 x, (18)

sin 2x = 2 sinx cosx, (19)

cos2 x =
1

1 + tan2 x
(20)

Spin interactions:

Sx
i S

x
j + Sy

i S
y
j =

1

2
(S+

i S
−
j + S−i S

+
j )

Holstein-Primakoff representation:

S+
j =

√
2S − nj aj,

S−j = a†j
√

2S − nj,

Sz
j = S − nj,

where nj ≡ a†jaj

aj =
1√
N

∑
k

eik·rjak

Lattice sum:
1

N

∑
j

ei(k−k′)·rj = δk,k′

Geometric series: ∞∑
n=0

xn =
1

1− x
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