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Problem 1

(a) The Dirac equation reads (with h̄ = c = 1)

i
∂ψ

∂t
= Hψ where H = ~α · ~p+ βm.

Briefly describe why Dirac sought an equation of this form.

(b) It turns out that an equation of this form also arises in the low-energy
description of some 1-dimensional condensed matter systems. In the rest of
this problem we therefore consider the Dirac equation in 1 spatial dimension.
There is then only one α matrix, α1. Use the same kind of reasoning as for
the 3-dimensional case to show that in the 1-dimensional case one gets the
conditions

α2
1 = β2 = 1,

α1β + βα1 = 0.

(c) A valid representation for β and α1 that satisfies these equations is β =
σ1 and α1 = σ3. Using this Pauli matrix representation, show that the
eigenvalues of H are given by

E = ±
√
p2 +m2

where p is the momentum eigenvalue.

(d) In terms of γ matrices (γ0 ≡ β and γ1 ≡ βα1) the Dirac equation reads

(iγµ∂µ −m)ψ = 0.

where µ runs over 0 and 1. Derive this equation from the Lagrangian density

L = ψ̄(iγµ∂µ −m)ψ

where ψ̄ = ψ†γ0.

(e) With our chosen representations for β and α1, the γ matrices become
γ0 = σ1 and γ1 = −iσ2. Consider the matrix γ5 ≡ γ0γ1, which is used to
define a chiral transformation as

ψ → eiθγ
5

ψ

where θ is an angular parameter. Show that under this transformation, ψ̄
transforms as

ψ̄ → ψ̄ eiθγ
5

,
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and show furthermore that the two-component vector(
ψ̄ψ

iψ̄γ5ψ

)

transforms as a rotation,(
ψ̄ψ

iψ̄γ5ψ

)
→
(

cosφ sinφ
− sinφ cosφ

)(
ψ̄ψ

iψ̄γ5ψ

)

where the rotation angle φ = φ(θ). Find the values of θ that leave this two-
component vector invariant. (These results have a natural interpretation in
the condensed matter context that we mentioned in the introduction, but we
don’t go into that here.)

Problem 2

In this problem we consider ϕ4 quantum field theory. Subproblems (a) and
(b) are about (position-space) Feynman diagrams for the 2-point function
〈Ω|T{ϕ(x)ϕ(y)}|Ω〉 ≡ DF (x − y)int in ϕ4 theory. Subproblem (c) involves
(momentum-space) Feynman diagrams for the Fourier transform D̃F (p)int of
the 2-point function.

(a) Using the Feynman rules for position-space Feynman diagrams, write
down the expression for the two Feynman diagrams (i)-(ii) below (you can
leave the symmetry factor S unspecified).

(b) After some simplifications, the perturbation expansion for the 2-point
function can be written schematically as a sum over Feynman diagrams, i.e.
DF (x− y)int =

∑
iAi, where Ai represents a Feynman diagram appearing in

this expansion. Among the 4 diagrams (i)-(iv) below, at least one of them is
not of the valid type Ai. Identify the invalid diagram(s), and if a diagram is
invalid, briefly state why.
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(c) Consider the following approximation for D̃F (p)int:

Using the momentum-space Feynman rules, find an expression for the dia-
gram with n loops in this series. [Hint: It may be helpful to start by finding
expressions for the diagrams with 0, 1, and 2 loops, and then if necessary
look at diagrams with more loops until you see a pattern. Note that the
symmetry factor for the diagram with n loops is 2n.] Use this to find an ex-
pression for D̃F (p)int in this approximation. (Don’t try to evaluate nontrivial
integrals.)
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Problem 3

Consider a tight-binding model of noninteracting electrons in a one-dimensional
crystal with N sites and periodic boundary conditions. The Hamiltonian is

H = −t
∑
j,σ

(c†j,σcj+1,σ + h.c.) + t′
∑
j,σ

(c†j,σcj+2,σ + h.c.).

Here c†j,σ (cj,σ) creates (annihilates) an electron with spin projection σ (=
±1/2) on site j. The first (second) term in H describes hopping between
nearest-neighbour (next-nearest-neighbour) sites. These terms have hopping
amplitudes −t and t′, respectively.

(a) Show that H can be written on diagonal form as

H =
∑
k,σ

εkc
†
kσckσ

where c†k,σ (ck,σ) creates (annihilates) an electron with wavevector k and spin
projection σ, the k sum is over the 1st Brillouin zone [−π, π〉 and

εk = −2t cos k + 2t′ cos 2k

(the wavevectors are dimensionless as we have set the lattice spacing to 1).

From now on, assume that t is positive and that the system is half-filled, i.e.
the number of electrons Ne equals the number of sites N . We will consider
the ground state of the Hamiltonian for different nonnegative values of t′. To
be precise we define here a Fermi wavevector of a one-dimensional system as
a wavevector that separates a region of occupied wavevectors from a region
of unoccupied wavevectors in the ground state of the system.

(b) First consider the case t′ = 0. Sketch εk. What are the values of the
Fermi wavevectors and the occupied wavevectors?

(c) Next consider t′ to be positive and define the ratio r = t′/t (> 0). Show
that there is a critical value rc such that for r < rc the system has two Fermi
wavevectors while for r > rc the system has four Fermi wavevectors. Derive
the value of rc and find the Fermi energy at r = rc.
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Formulas

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

σiσj + σjσi = 2δi,j (i, j = 1, 2, 3)

D̃F (p) =
i

p2 −m2 + iε

1

N

∑
j

ei(k−k
′)j = δk,k′
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