
Systems of non-interacting electrons

We now turn to a brief discussion of noninteracting electrons, which we’ll define here as
electrons that do not interact among themselves. Of course this is a fictional scenario since
in reality electrons interact with each other via the Coulomb interaction. Nevertheless, there
are several reasons why it is still worth discussing systems in which interactions between
the particles are artificially neglected. First, non-interacting systems are much simpler than
interacting ones, so we address them first because “you have to learn to crawl before you
can learn to walk.” Second, common approaches to interacting systems include (i) various
types of perturbation theory, where one perturbs around a non-interacting system, and (ii)
various treatments based on approximating the interacting system with some version of a
non-interacting one, in the sense of being described by a Hamiltonian which is quadratic in
creation/annihilation operators; for both approaches it is clearly necessary to have a good
understanding of the non-interacting case. Third, and quite remarkably, it turns out that as
far as low-energy and low-temperature properties are concerned, many electronic systems do
in fact behave as if they were composed of non-interacting or weakly interacting spin-1/2
charge-e fermions (called Landau quasi-particles); such systems are known as Fermi liquids.

In these notes we will consider two different systems of noninteracting electrons: electrons
that are not subjected to any external potential (called the free electron gas), and electrons
that are subjected to an external potential that is periodic in space (which describes electrons
in a crystal). In the latter case we will limit our discussion to the so-called tight-binding
model. (Later we will also consider a very simple1 model that incorporates some of the
interactions between electrons in a crystal, namely the so-called Hubbard model.)

1 The free electron gas

We consider free electrons living in a three-dimensional “box” of macroscopic size with
lengths Lx, Ly, and Lz and volume V = LxLyLz. As our single-particle basis we take the
plane-wave states that are eigenfunctions of the single-particle Schrödinger equation in the
box, i.e.

φkσ(r, s) =
1√
V
eik·rδsσ. (1)

We use periodic boundary conditions [φkσ(r + Lxêx, s) = φkσ(r, s) and similarly for the y
and z directions], so the allowed wavevectors must satisfy eikxLx = eikyLy = eikzLz = 1, which
implies that they take the form

k = 2π

(
nx
Lx
êx +

ny
Ly
êy +

nz
Lz
êz

)
, (2)

1Simple to write down, but not to solve!

1



where nx, ny, and nz are arbitrary integers.
The Hamiltonian is simply the kinetic energy operator:

Ĥ =
∑
k,σ

~2k2

2m
ĉ†kσ ĉkσ (3)

which is already diagonal in the chosen basis, so the many-particle eigenfunctions are Slater
determinants made up of the plane-wave states (1). The ground state of a system with N
electrons is obtained by filling theN plane-wave states (1) with the lowest possible energy in a
way that is consistent with the Pauli principle, i.e. no more than one electron per state (kσ).
Since σ can take two values ±1/2, two electrons may have the same wavevector k provided
they have opposite values of σ. Since the single-particle energy ~2k2/2m is independent of
σ and only depends on the magnitude of k (i.e. not on its direction), the ground state is
obtained by putting 2 electrons in all k-states inside a sphere centered around the origin in
k-space whose radius kF (called the Fermi wavevector) is such that there are exactly N/2
allowed k-vectors inside the sphere (here we have assumed that N is an even number). This
sphere is called the Fermi sphere. The surface of this sphere is called the Fermi surface:
it separates the occupied k-states (inside the sphere) from the unoccupied k-states (outside
the sphere). We can express the ground state |FS〉 (where FS stands for Fermi sphere) in
terms of creation operators acting on the vacuum state:

|FS〉 =
∏
|k|≤kF

ĉ†k↑ĉ
†
k↓|0〉. (4)

Let us now express the particle density n = N/V in terms of kF . To do this, we write
the particle number N as the ground-state expectation value of the total number operator
N̂ :

N = 〈FS|N̂|FS〉 =
∑
k,σ

〈FS|n̂kσ|FS〉 =
∑
k,σ

〈FS|nkσ|FS〉 =
∑
k,σ

nkσ = 2
∑
k

Θ(kF − |k|), (5)

where Θ(x) is the Heaviside step function, defined as Θ(x) = 1 if x > 0, Θ(x) = 0 if
x < 0. For a system of macroscopic size, neighbouring k-states will be very close, since for
each direction α = x, y, z the distance between adjacent allowed k values is ∆kα = 2π/Lα.
Therefore the sum over k can be well approximated by an integral, as follows: Using that
(Lx/2π)∆kx = 1 etc., we have∑

k

=
Lx
2π

Ly
2π

Ly
2π

∑
k

∆kx∆kx∆kz =
V

(2π)3

∑
k

∆kx∆ky∆kz →
V

(2π)3

∫
dkxdkydkz. (6)

The quantity V/(2π)3 is thus the density of k-states in 3-dimensional k-space. Returning to
the calculation of N , we note that since the integrand θ(kF − |k|) is spherically symmetric,
it is preferable to use spherical coordinates in the integral. Thus we get

N = 2 · V

(2π)3

∫ 2π

0

dϕ

∫ 1

−1
d(cos θ)

∫ kF

0

dk k2 = 2 · V

(2π)3
· 2π · 2 · 1

3
k3F =

V k3F
3π2

, (7)
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and therefore

n =
k3F
3π2

. (8)

Next let us calculate the ground state energy E0. It can be expressed as the ground-state
expectation value of the Hamiltonian:

E0 = 〈FS|Ĥ|FS〉 =
∑
k,σ

~2k2

2m
〈FS|n̂kσ|FS〉 =

∑
k,σ

~2k2

2m
〈FS|nkσ|FS〉 =

∑
k,σ

~2k2

2m
nkσ

= 2
∑
k

~2k2

2m
Θ(kF − |k|) = 2

~2

2m

V

(2π)3

∫ 2π

0

dϕ

∫ 1

−1
d(cos θ)

∫ kF

0

dk k2 k2

= 2
~2

2m

V

(2π)3
· 2π · 2 · 1

5
k5F =

V

5π2

~2k5F
2m

. (9)

Let us introduce the Fermi energy εF =
~2k2F
2m

, which is the energy of the electrons on the
Fermi surface (i.e. εF is the energy of the most energetic electrons in the ground state).
Invoking also Eq. (8) we then get

E0 =
3

5
NεF . (10)

Thus the average electron energy in the ground state of an electron gas is 3/5 of the energy
of the most energetic electrons.

This discussion was for a three-dimensional electron gas. One can also consider the
electron gas in two or one dimensions. In the 2D case the Fermi ”sphere” of occupied k-
states in the ground state will be a disk of radius kF , and the Fermi ”surface” will be the
boundary (perimeter) of that disk. In the 1D case the Fermi ”sphere” will be a line of length
2kF (i.e. going from k = −kF to k = +kF ), and the Fermi ”surface” is merely the two
end-points k = ±kF of that line (for this reason these points are also called the Fermi points
in this 1D case).

2 Tight-binding model for electrons in a crystal

Consider a simple crystal, characterized by its atoms being arranged in an ordered way,
such that their equilibrium positions are at the sites of a periodic lattice. In the so-called
tight-binding model, each electron is taken to be in an orbital localized around a particular
atom2 and has a (small) amplitude for tunneling to a different orbital localized around a
nearby atom. For simplicity let us assume that only one orbital per atom is relevant for this
conduction and furthermore that the crystal is one-dimensional (1D).3 Consider therefore
a 1D lattice with N sites.4 Let the operator ĉ†jσ create an electron in the orbital localized
around site j = 1, 2, . . . , N with spin projection σ = ±1/2. We will use periodic boundary

2Technically, these orbitals are called Wannier orbitals. They form a complete orthonormal basis.
3For a general and careful discussion of the tight-binding model, see Ch. 10 of Ashcroft and Mermin,

”Solid state physics”, Thomson Learning, 1976.
4Please note that in this section N stands for the number of sites, while in the previous section N was

the number of electrons, which in this section will be called Ne....
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conditions, i.e. ĉj+N,σ = ĉj,σ, which makes the system like a necklace, with the sites being
“beads” evenly spaced along it. Let us consider the following Hamiltonian:

Ĥ = −t
∑
j,σ

(ĉ†j,σ ĉj+1,σ + h.c.) (11)

where “h.c.” means hermitian conjugate, i.e. the adjoint operator. This Hamiltonian is the
kinetic energy operator associated with the electrons hopping between neighbouring sites on
the 1D lattice. To see this, consider an electron with spin σ sitting on site ` and consider
the process of this electron hopping to the site immediately to the right, which has label
` + 1. So in the initial state this electron is on site ` while in the final state it has moved
to site `+ 1. Mathematically, the hopping can be described as a two-step process: First the
electron with spin σ at site ` is annihilated, and then the electron with spin σ at site ` + 1
is created. This is effected by the operator ĉ†`+1,σ ĉ`,σ. Its h.c. describes the hopping of an
electron with spin σ from site ` + 1 to site `. The parameter t > 0 is called the hopping
amplitude.5

We want to find the eigenstates and eigenvalues of Ĥ. To this end, we introduce operators
creating and annihilating electrons in definite k-states by writing

ĉjσ =
1√
N

∑
k

eikrj ĉkσ, (12)

where
rj = ja (13)

is the position of site j in the lattice, where a is the distance between neighbouring sites (a
is usually called the lattice constant). The total length of the system is L = Na. Periodic
boundary conditions ĉjσ = ĉj+N,σ imply that eikL = 1, i.e. the allowed wavevectors take the
form k = 2πm/L where m is an integer. Because we have (for each value of σ) N operators
ĉjσ (since j = 1, 2, . . . , N), we also have N independent operators ĉkσ corresponding to
N inequivalent values of k. It is customary to choose these N k-values to be given by
m = −N/2,−N/2 + 1, . . . , N/2−1 (here we assumed that N is an even number). This gives
k = −π/a,−π/a + 2π/L, . . . , π/a − 2π/L, which in the limit N → ∞ means that k lies in
the region [−π/a, π/a〉 which is called the 1st Brillouin zone for the 1D lattice. The inverse
transformation is

ĉkσ =
1√
N

∑
j

e−ikrj ĉjσ. (14)

This can be seen by checking that the transformation and the inverse transformation “undo”
each other, thus taking us back to where we started:

ĉjσ =
1√
N

∑
k

eikjaĉkσ =
1√
N

∑
k

eikja
1√
N

∑
j′

e−ikj
′aĉj′σ

=
∑
j′

ĉj′σ
1

N

∑
k

eik(j−j
′)a

︸ ︷︷ ︸
δjj′ (see Appendix)

=
∑
j′

ĉj′σδjj′ = ĉjσ. (15)

5For a more detailed discussion, see Sec. 3.1 in Nagaosa’s ”Quantum field theory in strongly correlated
electronic systems” and Sec. 2.2 in ”Condensed matter field theory” by Altland and Simons (p. 54-55). In
our discussion we will just take t as a given parameter.
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Note that ĉk+2π/a,σ = ĉkσ, which shows that wavevectors that differ by an integer multiple of
2π/a are equivalent to each other. This is of course consistent with our finding above that
we could choose the N inequivalent values of k to all lie inside the 1st Brillouin zone, an
interval of length 2π/a. Using the anticommutation relations for the site-labeled operators,
i.e.

{cjσ, c†j′σ′} = δjj′δσσ′ , {cjσ, cj′σ′} = {c†jσ, c
†
j′σ′} = 0, (16)

one finds that the wavevector-labeled operators satisfy the same kind of canonical anticom-
mutation relations, i.e.

{ckσ, c†k′σ′} = δkk′δσσ′ , {ckσ, ck′σ′} = {c†kσ, c
†
k′σ′} = 0. (17)

Using the transformation (12) the sum
∑

j ĉ
†
jσ ĉj+1,σ appearing in Ĥ becomes∑

j

ĉ†jσ ĉj+1,σ =
1

N

∑
j

∑
k,k′

e−ikjaeik
′(j+1)aĉ†kσ ĉk′σ

=
∑
k,k′

ĉ†k,σ ĉk′σe
ik′a 1

N

∑
j

e−i(k−k
′)ja

︸ ︷︷ ︸
δkk′ (see Appendix)

=
∑
k

eika ĉ†kσ ĉkσ. (18)

Thus
Ĥ = −t

∑
k,σ

(eika ĉ†kσ ĉkσ + h.c.) = −t
∑
k,σ

(eika + e−ika)ĉ†kσ ĉkσ, (19)

i.e.
Ĥ =

∑
kσ

εkĉ
†
kσ ĉkσ, (20)

where the energy function εk, often called the dispersion relation, is given by

εk = −2t cos ka. (21)

Eq. (20) gives Ĥ as a linear combination of number operators n̂kσ = ĉ†kσ ĉkσ. The eigenstates

and eigenvalues of Ĥ can then be read off easily. An arbitrary eigenstate |A〉 of Ĥ is specified

by giving its occupation numbers n
(A)
k,σ (= 0 or 1) for all the single-particle state (k, σ). The

associated eigenvalue Ea is given by

Ea =
∑
kσ∈A

εk (22)

where the sum runs over those (k, σ) states that are occupied in |A〉 (i.e. have n
(A)
kσ = 1).

Typically we are interested in a system which contains some fixed number of electrons
Ne (note that we must have Ne ≤ 2N due to the Pauli principle). The occupation numbers
nk,σ of an eigenstate with Ne electrons therefore satisfies the constraint∑

k,σ

nk,σ = Ne. (23)
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The ground state of such a system is obtained by filling those Ne (k, σ) states that have the
smallest energy εk. Each k-state can be occupied by two electrons, one having σ = +1/2 (spin
↑) and the other having σ = −1/2 (spin ↓). As εk has a minimum at k = 0 and grows
monotonically as k moves away from 0 inside the 1st Brillouin zone, the k-states that will
be filled are the Ne/2 states closest to k = 0, which will enclose a region from k = −kF to
k = +kF where kF is the Fermi wavevector. Thus the ground state can again be written on
the form (4), and the relationship between the particle density n and kF can be worked out
in a similar way as for the continuum electron gas (and so can the relationship between the
ground state energy E0 and kF ).

Because the constraint (23) can be cumbersome to work with, for convenience one instead
often uses a formulation in which the particle number can vary, and only the average number
of particles is fixed. This involves replacing the Hamiltonian Ĥ with the operator

K̂ = Ĥ − µN̂ (24)

(sometimes called the ”Kamiltonian”), where N̂ is the total particle number operator and µ is
the so-called chemical potential, which is chosen such that the average number of electrons
equals the constant Ne, the actual number of electrons in the system of interest. If one
considers such a system at thermal equilibrium at a temperature T , µ becomes a function
of temperature, i.e. µ = µ(T ). For a given value of µ(T = 0), the ground state of the
system is obtained as the eigenstate of K̂ with the smallest eigenvalue. As an example of
this procedure, consider again the problem of electrons hopping on a 1D lattice. Using that

N̂ =
∑
j,σ

ĉ†jσ ĉjσ =
∑
k,σ

ĉ†kσ ĉkσ (25)

one finds
K̂ =

∑
k,σ

(εk − µ)ĉ†kσ ĉkσ. (26)

We see that the only difference from (20) is the replacement εk → εk − µ. The smallest
eigenvalue of K̂ is obtained by taking nk,σ = 1 for those k with εk − µ < 0 and nk,σ = 0 for
those k with εk − µ > 0. In other words, all single-particle states (k, σ) with energy εk less
than µ(T = 0) are occupied, while all states with higher energy are empty. This shows that
the zero-temperature value of the chemical potential is equal to the Fermi energy εF of the
system.

So far we have considered electrons hopping on a 1D lattice. Of course, electrons hopping
on 2- or 3-dimensional lattices is at least as relevant, and it is straightforward to generalize
the hopping Hamiltonian (11) to such higher-dimensional lattices. An example is considered
in Exercise 1 for Week 16. In this course we limit ourselves to ”hypercubic” lattices, i.e. a
square lattice in two dimensions and a cubic lattice in three dimensions. Then the associated
1st Brillouin zone becomes a square in two dimensions and a cube in three dimensions,
centered at the origin in k-space and with sides of length 2π/a parallel to the axes of the
real-space lattice. Note that when discussing lattice problems like these, one very often
chooses to measure distances in units of the lattice spacing a, thus setting a = 1. Then
wavevectors become dimensionless, so the sides of the 1st Brillouin zone have length 2π (i.e.
running from −π to π in each of the D k-space directions for a D-dimensional lattice).
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A Some frequently encountered k- and j-sums

In Sec. 2 we used that ∑
k

eik(j−j
′)a = Nδjj′ , (27)∑

j

e−i(k−k
′)ja = Nδkk′ , (28)

where k = 2πm/L and k′ = 2πm′/L, with m and m′ integers that can take the val-
ues −N/2, . . . , N/2 − 1 such that k and k′ are in the 1st Brillouin zone [−π/a, π/a〉, and
j = 1, 2, . . . N .

Let us prove Eq. (27). If j = j′ the exponential is 1, so the sum is N · 1 = N . If j 6= j′,
consider the summand which is

eik(j−j
′)a = ei

2π
Na

m(j−j′)a ≡ xm, where x ≡ ei2π(j−j
′)/N . (29)

Since both j and j′ can only take values between 1 and N , and we have assumed j 6= j′, we
get 0 < |j − j′| < N , and therefore x 6= 1. We now rewrite the sum as

∑
k

eik(j−j
′)a =

N/2−1∑
m=−N/2

xm = x−N/2
N−1∑
m=0

xm = x−N/2
1− xN

1− x
, (30)

where we used the formula for the sum of a geometric series. Since x 6= 1 the denominator
1−x is nonzero. Furthermore, xN = ei2π(j−j

′) = 1, so 1−xN vanishes. This proves Eq. (27).

The proof of (28) is very similar and is therefore left to the reader.
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