
Noninteracting electrons

We next turn to a discussion of noninteracting electrons, which we’ll define here as elec-
trons that do not interact among themselves.1 Of course this is strictly speaking a fictional
scenario. Nevertheless, there are several reasons why it is still worth discussing systems in
which interactions between the electrons are neglected.

• Non-interacting systems are much simpler than interacting ones, so we address them
first because “you have to learn to crawl before you can learn to walk.” Mathematically,
they are described by Hamiltonians that are quadratic (“bilinear”) in creation and an-
nihilation operators, i.e. linear combinations of terms like c†αcβ. Such Hamiltonians are
either “automatically” diagonal (i.e. given as a linear combination of number operators
c†αcα) in an appropriately chosen basis (the noninteracting electron gas discussed below
is an example) or they can be brought on such diagonal form (“be diagonalized”) by
transforming to a suitable basis. In contrast, electron-electron interactions are repre-
sented by terms in the Hamiltonian of the “quartic” form c†αc

†
βcγcδ, which are much

more complicated beasts altogether.

• Two common approaches to interacting systems include (i) various types of pertur-
bation theory, where one perturbs around a non-interacting system, and (ii) various
types of mean field theory, in which one attempts to approximate the interacting
system with a non-interacting one, by trying to identify and take into account the most
important quartic terms and approximate them with “effective” quadratic terms (since
the resulting effective Hamiltonian is quadratic it can be diagonalized in standard ways,
thus leading to a solvable theory).

• Quite remarkably, it turns out that as far as various low-energy and low-temperature
properties are concerned, many electronic systems do in fact behave as if they were
composed of non-interacting or weakly interacting spin-1/2 charge-e fermions (called
Landau quasi-particles). Such systems are known as Fermi liquids and the theory
behind them (developed by Landau in its original form) is called Fermi liquid theory.

Thus for the problems which can be analyzed using these theories and approaches, it is
clearly useful to understand the properties of noninteracting electrons. We will first consider
the simplest example of noninteracting electrons: the free electron gas, i.e. electrons not
subjected to any spatially varying external potential.

The free electron gas

We consider free electrons living in a three-dimensional “box” of macroscopic size with
lengths Lx, Ly, and Lz and volume Ω = LxLyLz. As our single-particle basis we take the

1The definition of “noninteracting” used here is the same as the one used in “Solid state physics” by
Ashcroft & Mermin: Electrons are called “noninteracting” if they do not interact with each other. Noninter-
acting electrons may or may not be “free.” Electrons are called free unless they are subjected to an external
spatially varying potential (given by a single-particle operator U).
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plane-wave states that are eigenfunctions of the single-particle Schrödinger equation in the
box, i.e.

φkσ(r, s) =
1√
Ω
eik·rδsσ. (1)

We use periodic boundary conditions [φkσ(r + Lxêx, s) = φkσ(r, s) and similarly for the y
and z directions], so the allowed wavevectors must satisfy eikxLx = eikyLy = eikzLz = 1, which
implies that they take the form

k = 2π

(
nx
Lx
êx +

ny
Ly
êy +

nz
Lz
êz

)
, (2)

where nx, ny, and nz are arbitrary integers.

The Hamiltonian is just the kinetic energy operator,

Ĥ =
∑
k,σ

~2k2

2m
ĉ†kσ ĉkσ. (3)

Due to its diagonal nature, i.e. the fact that it is simply a linear combination of number
operators n̂kσ = ĉ†kσ ĉkσ, its eigenstates and eigenvalues can be read off easily. An arbitrary

eigenstate |A〉 of Ĥ is specified by giving its occupation numbers n
(A)
kσ (= 0 or 1) for all

single-particle states (k, σ). The eigenstate can be written

|A〉 =
∏
k,σ

(c†kσ)n
(A)
k,σ |0〉 (4)

where |0〉 is the state with no electrons (vacuum state). The associated eigenvalue E(A) is
given by

E(A) =
∑
k,σ

~2k2

2m
n

(A)
kσ . (5)

If the system has N electrons, the occupation numbers must satisfy∑
k,σ

n
(A)
kσ = N. (6)

The many-particle eigenfunctions are Slater determinants made up of the plane-wave states
(1) that are occupied. The ground state of a system with N electrons is obtained by filling
the N plane-wave states with the lowest possible energy in a way that is consistent with the
Pauli principle, i.e. no more than one electron per state (kσ). Since σ can take two values
±1/2, two electrons may have the same wavevector k provided they have opposite values of
σ. Since the single-particle energy ~2k2/2m is independent of σ and only depends on the
magnitude of k (i.e. not on its direction), the ground state is obtained by putting 2 electrons
in all k-states inside a sphere centered around the origin in k-space whose radius kF (called
the Fermi wavevector) is such that there are exactly N/2 allowed k-vectors inside the
sphere (here we have assumed that N is an even number). This sphere is called the Fermi
sphere. The surface of this sphere is called the Fermi surface: it separates the occupied
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k-states (inside the sphere) from the unoccupied k-states (outside the sphere). These things
are illustrated in Fig. 1. We can express the ground state |FS〉 (where FS stands for Fermi
sphere) in terms of creation operators acting on the vacuum state:

|FS〉 =
∏
|k|≤kF

ĉ†k↑ĉ
†
k↓|0〉. (7)

Let us now express the particle density n = N/Ω in terms of kF . To do this, we write the
particle number N as the ground-state expectation value of the total number operator N̂ :

N = 〈FS|N̂|FS〉 =
∑
k,σ

〈FS|n̂kσ|FS〉 =
∑
k,σ

〈FS|nkσ|FS〉 =
∑
k,σ

nkσ = 2
∑

k

Θ(kF − |k|), (8)

where Θ(x) is the Heaviside step function, defined as Θ(x) = 1 if x > 0, Θ(x) = 0 if
x < 0. For a system of macroscopic size, neighbouring k-states will be very close, since for
each direction α = x, y, z the distance between adjacent allowed k values is ∆kα = 2π/Lα.
Therefore the sum over k can be well approximated by an integral, as follows: Using that
(Lx/2π)∆kx = 1 etc., we have∑

k

=
Lx
2π

Ly
2π

Ly
2π

∑
k

∆kx∆kx∆kz =
Ω

(2π)3

∑
k

∆kx∆ky∆kz →
Ω

(2π)3

∫
dkxdkydkz. (9)

The quantity Ω/(2π)3 is thus the density of k-states in 3-dimensional k-space. Returning to
the calculation of N , we note that since the integrand θ(kF − |k|) is spherically symmetric,
it is preferable to use spherical coordinates in the integral. Thus we get

N = 2 · Ω

(2π)3

∫ 2π

0

dϕ

∫ 1

−1

d(cos θ)

∫ kF

0

dk k2 = 2 · Ω

(2π)3
· 2π · 2 · 1

3
k3
F =

Ωk3
F

3π2
, (10)

and therefore

n =
k3
F

3π2
. (11)

Next let us calculate the ground state energy E0. It can be expressed as the ground-state
expectation value of the Hamiltonian:

E0 = 〈FS|Ĥ|FS〉 =
∑
k,σ

~2k2

2m
〈FS|n̂kσ|FS〉 =

∑
k,σ

~2k2

2m
〈FS|nkσ|FS〉 =

∑
k,σ

~2k2

2m
nkσ

= 2
∑

k

~2k2

2m
Θ(kF − |k|) = 2

~2

2m

Ω

(2π)3

∫ 2π

0

dϕ

∫ 1

−1

d(cos θ)

∫ kF

0

dk k2 k2

= 2
~2

2m

Ω

(2π)3
· 2π · 2 · 1

5
k5
F =

Ω

5π2

~2k5
F

2m
. (12)

Let us introduce the Fermi energy εF =
~2k2

F

2m
, which is the energy of the electrons on the

Fermi surface (i.e. εF is the energy of the most energetic electrons in the ground state).
Invoking also Eq. (11) we then get

E0 =
3

5
NεF . (13)
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Figure 1: Fermi spheres, Fermi surfaces, and Fermi wavevectors in 3, 2, and 1 dimensions.

Thus the average electron energy in the ground state of an electron gas is 3/5 of the energy
of the most energetic electrons.

We have here discussed a three-dimensional electron gas. One can also consider the electron
gas in two or one dimensions. In the 2D case the Fermi ”sphere” of occupied k-states in
the ground state will be a disk of radius kF , and the Fermi ”surface” will be the boundary
(perimeter) of that disk. In the 1D case the Fermi ”sphere” will be a line of length 2kF (i.e.
going from k = −kF to k = +kF ), and the Fermi ”surface” is merely the two end-points
k = ±kF of that line (for this reason these points are also called the Fermi points in this 1D
case). These things are illustrated in Fig. 1.
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