
“Second quantization” (the
occupation-number representation)

February 14, 2013

1 Systems of identical particles

1.1 Particle statistics

In physics we are often interested in systems consisting of many identical particles. By
“identical” we mean that all intrinsic physical properties of the particles are the same. For
example, all electrons are identical since they have the same mass, electric charge, and spin
(S = 1/2). In classical physics one can (at least in principle) follow the trajectories of
individual particles, so identical particles are therefore distinguishable in classical physics.
In quantum physics, however, identical particles which are in the same region of space can
not be distinguished from each other. This puts certain constraints on the many-particle
wavefunctions of such systems. If the wavefunction of a system of N identical particles is
Ψ(x1, x2, . . . , xN), where xi = (ri, si) denotes the position (ri) and spin (si) coordinates1 of
particle i, then the quantum indistinguishability implies that

|Ψ(x1, . . . , xj, . . . , xk, . . . , xN)|2 = |Ψ(x1, . . . , xk, . . . , xj, . . . , xN)|2 (1)

i.e. the probability (density) is the same for two configurations that differ in the exchange
of the coordinates of any two particles (particles j and k in the equation above). [Note that
exchanging coordinates for particles with spin means exchanging both spatial and spin coor-
dinates.] In 3 spatial dimensions this can be shown to lead to only two different possibilities

1For example, for electrons, which have spin S = 1/2, si has the possible values ±1/2 (the eigenvalues of
the electron spin operator along some chosen axis).
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under exchange of the coordinates of two particles:2

Ψ→ +Ψ, i.e. the wavefunction is symmetric under such exchange, or (2)

Ψ→ −Ψ, i.e. the wavefunction is anti-symmetric. (3)

Particles with a symmetric wavefunction are called bosons, particles with an antisymmetric
wavefunction are called fermions. Using relativistic quantum field theory, it can be shown
that bosons have integer spin, and fermions have half-integer spin; this is called the spin-
statistics theorem. (We will mostly focus on fermions in this course but will also discuss
bosons.) The symmetry properties of the wavefunction has profound implications for the
statistics of the particles, and lead to significant differences in the low-temperature behaviour
of systems of bosons and fermions, which in the noninteracting case is described in terms of
the Bose-Einstein and Fermi-Dirac distribution, respectively.

In this course our main example of fermions will be electrons, which are of great interest
in condensed matter physics. Another class of systems that have received a lot of attention
in recent years is dilute atomic gases. These consist of neutral atoms, which are composite
objects that, under conditions when anything else than exchanging the coordinates of the
atoms as a whole (i.e. all their constituent fermions) has a negligible probability amplitude,
are effectively bosons or fermions: Atoms consisting of an even number of fermions (elec-
trons + protons + neutrons) behave as bosons, while atoms consisting of an odd number of
fermions behave as fermions.

1.2 Many-particle wavefunctions

Next, let us discuss how to construct many-particle wavefunctions. The main part of the
job is to construct a basis set of many-particle wavefunctions having the appropriate sym-
metry (symmetric under particle exchange for bosonic particles, antisymmetric for fermionic

2For particles restricted to move in 2 spatial dimensions there also turns out to be more exotic possibilities
than just bosons and fermions, namely so-called anyons, the simplest versions of which have statistics that
are intermediate between bosons and fermions, in the following sense: exchanging two particles causes the
wavefunction to change by a phase factor eiθ, where θ is called the statistics angle. Bosons and fermions
correspond to the special cases θ = 0 and θ = π, respectively, while for intermediate θ the particles are
called (abelian) anyons. Here we will not go into the derivation of these results, which were not conceived
until the late 1970’s in a seminal paper by Jon Magne Leinaas and Jan Myrheim. Note however that many
textbooks simply argue, without further justification, that exchanging the particle coordinates twice should
be equivalent to no exchange at all, so that if η is the phase factor for one exchange, two exchanges give
η2 = 1, which thus only gives the solutions η = ±1 corresponding to bosons and fermions. This approach
turns out to be incorrect, the problem with it being that it views particle exchange to be merely the abstract
mathematical operation of permuting coordinates in the wavefunction, while one really needs to consider
physically exchanging the two particles by moving them in continuous paths around each other, and it is
the topological properties of these paths (in the properly defined configuration space, which depends on the
spatial dimension) that determine the statistics. [For an introduction to these ideas, see e.g. the review
by G. S. Canright and S. M. Girvin, Science 247, 1197 (1990).] Also note that anyons are not theoretical
abstractions; they are in fact known to exist in experimentally realized systems exhibiting the fractional
quantum Hall effect, and research into systems having (quasi-)particles with possible fractional statistics
(which is the generic name for particle statistics that’s different from that of bosons and fermions) is a very
hot topic in modern condensed matter physics. However, in these notes we will not consider such systems
any further.
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particles). An arbitrary many-particle wavefunction expanded in this basis will then auto-
matically satisfy the appropriate symmetry.

We consider a system with Hamiltonian

Ĥ = Ĥ0 + ĤI . (4)

Here

Ĥ0 =
N∑
i=1

ĥ(xi) where ĥ(xi) = − ~2

2m
∇2
i + U(xi). (5)

Note that Ĥ0 is a sum of terms, each involving the coordinates of only one particle. Ĥ0 is thus
called a single-particle operator and represents the noninteracting part of the Hamiltonian.
The term −(~2/2m)∇2 is the kinetic energy operator of a particle while U is a potential
energy due to some “external” potential. On the other hand, ĤI will be a sum of terms
each involving the coordinates of more than one particle. It is thus called a many-particle
operator and represents interactions between the particles. In this course we will limit our-
selves to two-particle interactions, but in some systems (such as atomic gases) interactions
involving more than two particles may also be important.

It is convenient to construct a basis set in which the basis many-particle wavefunctions
are eigenfunctions of a single-particle operator. It is furthermore often convenient to take
this single-particle operator to be Ĥ0, the noninteracting part of the Hamiltonian, so let us
for concreteness do this in the following (but any other hermitian single-particle operator
could have been used). So let us assume that we have found the eigenfunctions φν(x) and
associated eigenvalues εν for the single-particle problem defined by ĥ, i.e.

ĥ(x)φν(x) = ενφν(x). (6)

Here ν is a set of quantum numbers (assumed discrete in the following) which completely
characterize the single-particle eigenstates φν .

3 These states form an orthonormal and com-
plete set for expanding single-particle wavefunctions. Orthonormality means∫

dx φ∗ν(x)φν′(x) = δν,ν′ (7)

and completeness means ∑
ν

φ∗ν(x)φν(x
′) = δ(x− x′), (8)

where we introduced the notation4∫
dx ≡

∑
s

∫
d3r and δ(x− x′) = δ(r − r′)δs,s′ . (9)

3For example, if Ĥ0 describes free electrons, i.e. electrons not subject to any external potential, ν = (k, σ)
where k is a wavevector and σ = ±1/2 is the spin projection.

4Here δ(r) is the Dirac delta function, while δa,b (often written δab for short) is the Kronecker delta
function, defined for discrete arguments a, b as δa,b = 1 if a = b and 0 if a 6= b.
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From these single-particle wavefunctions we can then construct many-particle wavefunctions,
which are eigenfunctions of the noninteracting Hamiltonian H0, and have the correct sym-
metry. For bosons the wavefunction must be symmetric and can be written on the form (the
superscript S stands for ”symmetric”)

Φ(S)(x1, . . . , xN) =
1√

N !
√∏

ν nν !

∑
P∈SN

P φν1(x1)φν2(x2) · · ·φνN (xN). (10)

Here the sum is over all permutations P of the N coordinates x1, . . . , xN . SN is the set of all
these permutations; there are N ! permutations in all. The prefactor has been chosen to make
the state normalized to 1. The product

∏
ν nν ! (which means

∏
ν(nν !) where ! indicates the

factorial function, i.e. m! = 1 · 2 · 3 · (m− 1) ·m) is over all states in the single-particle basis
set; here nν is the number of bosons in the single-particle state ν. Note that for bosons there
is no restriction in how many particles can be in the same single-particle state. Hence in this
expression different indices νj can be identical. For example, if ν3 = ν5 (and all other indices
are different from ν3) the many-particle state would have two particles in the single-particle
state ν3, hence nν3 = 2.

For fermions the wavefunction must be antisymmetric and can be written (the superscript
A stands for ”antisymmetric”)

Φ(A)(x1, . . . , xN) =
1√
N !

∑
P∈SN

sgn(P ) · P φν1(x1)φν2(x2) · · ·φνN (xN). (11)

Compared to the bosonic case, there are two differences: (1) The product over occupation
numbers nν ! in the prefactor is not there (this is because, as we will shortly see, for fermions
nν can only be 0 or 1 (otherwise the wavefunction will vanish), in which case nν ! = 1 and
thus this product doesn’t have to be explicitly included), and (2) there is a factor sgn(P )
inside the sum. This is the sign of the permutation P . A permutation has a positive (neg-
ative) sign if it can be arrived at by an even (odd) number of two-particle permutations
(transpositions). For example, suppose we had 3 fermions. Let us consider the permutation
(123)→ (231). Any permutation can be written as a product of transpositions Pjk, each of
which interchanges the numbers at position j and k. For example, we have P13(123) = (321)
and P12(321) = (231). Hence we can write (231) = P12P13(123). Thus this permutation can
be written in terms of an even number of transpositions, and the sign of the permutation
is therefore positive. Although the way to express a permutation in terms of transpositions
is not unique, the evenness/oddness is unique, and hence the sign is also unique. In the
example just considered, we could have written (check!) (231) = P23P13P12P23(123), which
involves four transpositions, again an even number.

The fermionic wavefunction in (11) can be written as a determinant (which in this context
is often referred to as a Slater determinant):

Φ(A) =
1√
N !

∣∣∣∣∣∣∣
φν1(x1) · · · φν1(xN)
...

...
φνN (x1) · · · φνN (xN)

∣∣∣∣∣∣∣ . (12)
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Note that the determinant of a matrix vanishes if it contains identical rows and/or identical
columns. Therefore the determinant (12) will vanish if νi = νj for some i 6= j, i.e. it is not
possible to put more than one fermion into a given single-particle state. The determinant
will also vanish if xi = xj for some i 6= j, i.e. it is not possible to bring two fermions with the
same spin projection to the same point. These properties are known as the Pauli exclusion
principle.

Given some collection of N (singly) occupied single-particle states, the fermionic many-
particle wavefunction (12) constructed from them is defined only up to an overall sign. For
example, consider a two-particle state, with single-particle states ν1 and ν2 occupied. Then
we could define the wavefunction either as

Φ(A1) =
1√
2

(φν1(x1)φν2(x2)− φν1(x2)φν2(x1), (13)

or as

Φ(A2) =
1√
2

(φν2(x1)φν1(x2)− φν2(x2)φν1(x1)) = −Φ(A1). (14)

In order to avoid this kind of sign ambiguity (which could lead to errors in some calculations
if we are not sufficiently careful) we should define the overall sign for any such fermionic
many-particle wavefunction in a unique way. To do this we first decide on an ordering (that
we subsequently stick to) of the states νi in the complete set of single-particle states. Then,
when constructing the many-particle wavefunction out of N such states we use that ordering
in the determinant.

It is straightforward to check that the many-particle wavefunctions Φ(S/A) constructed here
are eigenfunctions of the non-interacting part Ĥ0 of the Hamiltonian, with eigenvalues given
by E =

∑
ν ενnν . The symmetric wavefunctions Φ(S) (antisymmetric wavefunctions Φ(A))

form a complete orthonormal basis set for the bosonic (fermionic) problem), satisfying∫
dNx Φ∗aΦb = δa,b (where

∫
dNx ≡

∫
dx1dx2 . . . dxN) (15)

so that any many-particle wavefunction Ψ can be expanded in them:

Ψ(x1, . . . , xN) =
∑
a

faΦa(x1, . . . , xN), (16)

where the fa’s are the expansion coefficients.

2 Second quantization (the occupation-number formal-

ism)

The many-particle basis wavefunctions considered in the previous section [Eq. (10) for
bosons, Eq. (11) or equivalently Eq. (12) for fermions] are rather cumbersome to work
with in practice. Fortunately, there exists an alternative and equivalent formalism, called
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”second quantization” or the occupation-number representation, that is much more con-
venient. In this formalism the essential information of many-body states is incorporated
in a very succinct way. This essential information consists of (i) the occupation number
for each single-particle state (for fermions these numbers can only be 0 or 1), and (ii) the
symmetry/anti-symmetry of the state under particle exchange. Note that the wavefunction
formalism discussed in the previous section is often referred to as “first quantization” when
it is compared and contrasted with the “second quantization” formalism.

In the following we will discuss the second quantization formalism for both fermions and
bosons. We start with the fermionic case.

2.1 Second quantization for fermions

2.1.1 Creation and annihilation operators

The second quantization method involves the use of so-called creation and annihilation oper-
ators. These operators respectively create and annihilate particles in specified single-particle
states. We will see that the anti-symmetry property of fermions manifests itself in character-
istic anti-commutation relations obeyed by these operators. Many-particle basis states with
the correct anti-symmetry are constructed as products of creation operators acting on the
“vacuum state” (the state containing no fermions). These many-particle basis states should
be thought of as analogous to the Slater determinants we constructed earlier; they contain
exactly the same information.

To make this more concrete, let’s consider a 3-particle state with the single-particle states
2, 4, and 6 occupied and all others empty.5 To this state there corresponds a unique Slater
determinant as explained in the previous section. The analogue of this Slater determinant
in the occupation number representation is written

|01, 12, 03, 14, 05, 16, 07, 08, 09, . . .〉 or just |0, 1, 0, 1, 0, 1, 0, 0, 0, . . .〉. (17)

This says that there are 0 particles in (single-particle) state 1, 1 in state 2, 0 in state 3, 1
in state 4 etc (note the ascending ordering of the states, in accordance with our ordering
convention for Slater determinants discussed previously). The reason for the name “occupa-
tion number representation” should be obvious, as the state (17) is specified by giving the
occupation number for each single-particle state.

An arbitrary many-particle basis state with n1 particles in single-particle state 1, n2 particles
in state 2, n3 particles in state 3 etc. (note that ni can only take the values 0 or 1) is therefore
written as

|n1, n2, n3, n4, n5, . . .〉. (18)

Now we define the creation operator c†ν (here ν labels a single-particle state in the single-
particle basis set) by how it acts on (18):

c†ν |n1, n2, . . . , nν , . . .〉 = (−1)
P
µ<ν nµ(1− nν)|n1, n2, . . . , 1ν , . . .〉, (19)

5We here use integers to label the single-particle states. The integers correspond to the ordering of
single-particle states discussed in the previous section.
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where (−1)
P
µ<ν nµ is a phase factor, equal to +1 or −1. Note that if nν = 1, i.e. if there

is already a fermion in state ν, the result of acting with c†ν is 0, i.e. it’s not possible to put
another fermion in that state. This is the Pauli principle. On the other hand, if nν = 0,
i.e. if there was no fermion in state ν, then after the creation operator c†ν has acted, there
is a fermion in state ν. Hence the name creation operator is appropriate. The phase factor
(−1)

P
µ<ν nµ depends on whether the total number of fermions in the single-particle states

with labels less than ν is even or odd. The role of this phase factor is related to the anti-
symmetry property of the fermions. For example, suppose we start with the vacuum state,
denoted |0〉, which by definition has no particles in any single-particle state:

|0〉 = |01, 02, 03, . . .〉. (20)

First we create a fermion in state 1, which gives

c†1|0〉 = |11, 02, 03, . . .〉. (21)

and then a fermion in state 2, giving the final state

c†2c
†
1|0〉 = c†2|11, 02, 03, . . .〉 = −|11, 12, 03, . . .〉. (22)

If we had created the fermions in the opposite order (i.e. first state 2, then state 1) we would
instead have gotten the state

c†1c
†
2|0〉 = |11, 12, 03, . . .〉 (23)

which differs from (22) by a minus sign. This sign difference reflects the anti-symmetry
property of fermions. It follows from repeated use of the definition of c†ν that we can write

|n1, n2, n3, . . .〉 = (c†1)n1(c†2)n2(c†3)n3 · · · |0〉. (24)

That is, any many-particle basis state can be created by acting on the vacuum state with
the appropriate set of creation operators in an appropriate order.

Next we define the annihilation operator cν by requiring that

cν |n1, . . . , nν , . . .〉 = (−1)
P
µ<ν nµnν |n1, . . . , 0ν , . . .〉, (25)

i.e. the result is nonzero (without a fermion in state ν) only if there already was a fermion
in state ν, which makes sense; it shouldn’t be possible to annihilate a fermion if it wasn’t
there to begin with. We see that the vacuum state |0〉 satisfies

cν |0〉 = 0 for all ν. (26)

Note that if |ΨN〉 is a state with N fermions, then c†ν |ΨN〉 and cν |ΨN〉 are states with
N + 1 and N − 1 fermions, respectively (if these expressions do not vanish). Thus cν and
c†ν are mappings between fixed-particle-number fermionic6 Hilbert spaces HN whose particle
numbers differ by 1:

cν : HN → HN−1, (27)

c†ν : HN → HN+1, (28)

6By a fermionic Hilbert space we mean that the states in the space have the correct fermionic antisym-
metry.
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where both mappings hold for any value N of the total particle number. The collection7 of
all these fixed-particle-number fermionic Hilbert spaces HN for N = 0, 1, 2, . . . is called the
Fock space F . For this reason many-particle states are also often called Fock states and
are said to live in Fock space. Operators, like cν and c†ν , are thus mappings between states
in the Fock space. Also note that, as suggested by the notation, the definitions of c†ν and cν
are such that these operators are each other’s adjoint in the Fock space, i.e.

c†ν = (cν)
†, and equivalently cν = (c†ν)

†. (29)

Let the anti-commutator {A,B} between two operators A and B be defined as

{A,B} ≡ AB +BA. (30)

By using the definitions (19) and (25) of the creation and annihilation operators one can
show that these operators satisfy the following anti-commutation relations

{cµ, cν} = 0, (31)

{c†µ, c†ν} = 0, (32)

{c†µ, cν} = δµ,ν . (33)

Let us prove Eq. (31). First consider µ 6= ν. Since {cµ, cν} = {cν , cµ} we can restrict ourselves to µ < ν in
the proof. For the state | . . . , nµ, . . . , nν , . . .〉, let us define θα = (−1)

P
β<α nβ . Then

cµcν | . . . , nµ, . . . , nν , . . .〉 = cµθνnν | . . . , nµ, . . . , 0ν , . . .〉
= θνnνcµ| . . . , nµ, . . . , 0ν , . . .〉
= θνnνθµnµ| . . . , 0µ, . . . , 0ν , . . .〉. (34)

Furthermore,

cνcµ| . . . , nµ, . . . , nν , . . .〉 = cνθµnµ| . . . , 0µ, . . . , nν , . . .〉
= θµnµcν | . . . , 0µ, . . . , nν , . . .〉
= θµnµθν(−1)0−nµnν | . . . , 0µ, . . . , 0ν , . . .〉
= −θµθνnµnν | . . . , 0µ, . . . , 0ν , . . .〉. (35)

In the third line the factor (−1)0−nµ compensates for a sign (−1)nµ too much in θν due to the fact that the
ket that cν acted on had occupation number 0 instead of nµ for state µ. In the fourth line we set nµ = 1 in
the exponent. This is ok also if nµ = 0 since then the result is 0 anyway because of the factor nµ multiplying
the ket. From (34) and (35) it then follows that (cµcν + cνcµ)| . . . , nµ, . . . , nν , . . .〉 = 0. Similarly, for the
case µ = ν it is easy to show that c2ν | . . . , nν , . . .〉 = 0. Thus for an arbitrary many-particle basis state |n〉
we have

(cµcν + cνcµ)|n〉 = 0 (for any µ, ν). (36)

Any state |Ψ〉 can be expanded in this basis, i.e. |Ψ〉 =
∑
n fn|n〉. Then

(cµcν + cνcµ)|Ψ〉 =
∑
n

fn(cµcν + cνcµ)|n〉 =
∑
n

fn · 0 = 0. (37)

Since this holds for all states |Ψ〉, it follows that cµcν + cνcµ = 0 is an operator identity. This concludes the
proof of Eq. (31). (Note that the case µ = ν implies that c2µ = 0 is an operator identity.) Eqs. (32) and

7Technically, “collection” should here be replaced by “direct sum”.
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(33) can be proved in a similar way. Actually, Eq. (32) can be obtained more easily by taking the adjoint
of Eq. (31), since

{cµ, cν}† = (cµcν + cνcµ)† = (cµcν)† + (cνcµ)† = c†νc
†
µ + c†µc

†
ν = {c†µ, c†ν}, (38)

where we used that (AB)† = B†A†.

Next consider acting on an arbitrary basis state |n〉 with the operator c†νcν :

c†νcν | . . . , nν , . . .〉 = θνnνc
†
ν | . . . , 0ν , . . .〉 = θ2

νnν(1− 0)| . . . , 1ν , . . .〉, (39)

i.e.,
c†νcν | . . . , nν , . . .〉 = nν | . . . , nν , . . .〉. (40)

Thus a basis state |n〉 is an eigenstate of n̂ν with eigenvalue nν . Hence c†νcν ≡ n̂ν counts
the number of fermions in single-particle state ν. For this reason n̂ν is called a number
operator. We also define the total number operator as

N̂ =
∑
ν

n̂ν . (41)

The effect of N̂ on a basis state is given by

N̂ |n〉 =
∑
ν

n̂ν |n〉 =
∑
ν

nν |n〉 = N |n〉 (42)

where N =
∑

ν nν is the total number of particles in |n〉. Thus |n〉 is an eigenstate of the

total number operator N̂ with eigenvalue N . Any linear combination of N -particle basis
states is also an eigenstate of N̂ with eigenvalue N .

2.1.2 Second-quantization representation of single-particle and two-particle
operators

To use the occupation number (”second quantization”) formalism, which is formulated in
terms of creation and annihilation operators such as the ones just introduced, we need to
know how ”first-quantized” operators (operators expressed in terms of particle coordinates
xi, like Ĥ0 in Eq. (5)) can be translated into their second-quantized versions. There are
two common types of operators. Single-particle operators (like Ĥ0) which can be written
as a sum of terms, each of which only involve the coordinates of a single particle, and two-
particle operators, which can be written as a sum of terms, each of which only involve the
coordinates of two particles (an example is the Coulomb interaction between electrons). The
“dictionary” for converting from first to second quantization is as follows:

• Single-particle operators:

Ĥ0 =
N∑
i=1

ĥ(xi) =⇒
∑
α,β

〈α|ĥ|β〉c†αcβ, (43)

where

〈α|ĥ|β〉 =

∫
dx φ∗α(x)ĥ(x)φβ(x). (44)
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• Two-particle operators:

ĤI =
1

2

∑
i,j=1

i 6=j

v̂(xi, xj) =⇒ 1

2

∑
α,β,γ,δ

〈αβ|v̂|γδ〉c†αc
†
βcδcγ, (45)

where

〈αβ|v̂|γδ〉 =

∫ ∫
dx dx′ φ∗α(x)φ∗β(x′)v̂(x, x′)φγ(x)φδ(x

′). (46)

To prove this correspondence one can consider the matrix elements 〈Φa|Ô|Φb〉 of an operator
Ô between any two basis states |Φa〉 and |Φb〉, and show that the same value is obtained for
such a matrix element regardless of which formalism (first or second quantization) is used to
calculate it. The basis states in first quantization are Slater determinants (wave functions),
the basis states in second quantization are the states |n〉 = |n1, n2, . . .〉. (To each Slater
determinant there corresponds a unique state of this type.)

It can be seen that the matrix element for single-particle operators is zero if the two Slater
determinants differ in the occupation of more than two single-particle states (due to or-
thogonality of different single-particle states). Therefore the second quantized version of
single-particle operators is a sum of terms, each of which only changes (at most) the occu-
pation of two single-particle states (the factor c†αcβ in Eq. (43) will attempt to transfer an
electron from state β to state α). Similarly, the matrix element for two-particle operators is
zero if the two Slater determinants differ in the occupation of more than four single-particle
states. Therefore the second quantized version of two-particle operators is a sum of terms,
each of which only changes (at most) the occupation of four single-particle states (the factor
c†αc
†
βcδcγ in Eq. (45) will attempt to transfer two fermions in states γ and δ to states α and β).

We will discuss the proofs of (43) and (45) later, after we have developed a bit more of the
basic formalism of second quantization.

2.2 Second quantization for bosons

It is assumed here that you have already been exposed to bosonic creation and annihilation
operators, through the solution of the single harmonic oscillator problem using creation and
annihilation operators b† and b satisfying [b, b†] = 1 (in that problem, when the system is in
the state |n〉 (n = 0, 1, 2, . . .) one can think of the system as being in the eigenstate with
n bosons). The only difference in the many-particle problem considered here is that we
have one set of creation and annihilation operators (b†ν and bν) for each single-particle state
ν. But this is a trivial change since for bosons, creation/annihilation operators belonging
to different single-particle states simply commute with each other (as will be seen below).
Thus most of the results below can be obtained by trivial generalizations of the results for
the single harmonic oscillator. Therefore we will just state the main results without giving
derivations.
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In the occupation-number representation, many-particle basis states for bosons take the form

|n1, n2, n3, . . .〉 ≡ |n〉. (47)

For bosons the occupation number nν of a single-particle state ν is not restricted to 0 or 1,
but can be any nonnegative integer. There is a one-to-one correspondence between states
of the form (47) and bosonic wavefunctions of the form (10). The bosonic creation and
annihilation operators b†ν and bν are defined as

b†ν | . . . , nν , . . .〉 =
√
nν + 1| . . . , nν + 1, . . .〉, (48)

bν | . . . , nν , . . . , 〉 =
√
nν | . . . , nν − 1, . . .〉. (49)

From these definitions it follows that b†νbν counts the number nν of bosons in single-particle
state ν:

b†νbν | . . . , nν , . . .〉 = (
√
nν)

2| . . . , nν , . . .〉 = nν | . . . , nν , . . .〉, (50)

and thus b†νbν ≡ n̂ν is called the number operator for this single-particle state. The total
number operator is defined as

N̂ =
∑
ν

n̂ν (51)

and satisfies
N̂ |n〉 = N |n〉 (52)

where N =
∑

ν nν is the total number of bosons in the state |n〉.

An arbitrary (properly normalized) basis state can be written as

|n1, n2, n3, . . .〉 =
∏
ν

(b†ν)
nν

√
nν !
|0〉 (53)

where |0〉 is the vacuum state containing no bosons. The operators bν and b†ν are adjoints of
each other, and satisfy the commutation relations

[bµ, bν ] = 0, (54)

[b†µ, b
†
ν ] = 0, (55)

[bµ, b
†
ν ] = δµ,ν . (56)

The formulas describing the conversion between the first- and second-quantized versions of
single- and two-particle operators for bosons are exactly the same as for fermions, i.e.

Ĥ0 =
N∑
i=1

ĥ(xi) =⇒
∑
α,β

〈α|ĥ|β〉b†αbβ, (57)

ĤI =
1

2

∑
i,j=1

i 6=j

v̂(xi, xj) =⇒ 1

2

∑
α,β,γ,δ

〈αβ|v̂|γδ〉b†αb
†
βbδbγ. (58)
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3 Basis transformations

So far in our analysis we have been using one particular basis set {φα(x)} of single-particle
wavefunctions. Now we will see how to transform to some other single-particle basis set.

Let |α〉 be the single-particle ket whose overlap with the position-spin eigenstate |x〉 is the
single-particle wavefunction φα(x), i.e.

φα(x) ≡ 〈x|α〉. (59)

For both bosonic and fermionic particles we can write

|α〉 = a†α|0〉 (60)

where a†α is the creation operator for a particle in single-particle state α. Let us now consider
a different single-particle basis set {φ̃α̃(x)} whose single-particle kets are denoted |α̃〉. That
is,

φ̃α̃(x) ≡ 〈x|α̃〉 (61)

with
|α̃〉 = a†α̃|0〉, (62)

i.e. a†α̃ is the creation operator for a particle in the single-particle state α̃. As a concrete
example, {|α〉} could be the set of eigenstates of the kinetic-energy operator p̂2/(2m), while
{|α̃〉} could be the eigenstates of the operator p̂2/(2m) + U(x̂), where U(x̂) is a potential
energy term.

To transform between the two single-particle basis sets we use the resolution of the identity
I in the single-particle Hilbert space:

I =
∑
α

|α〉〈α| =
∑
α̃

|α̃〉〈α̃|. (63)

Thus
a†α|0〉 = |α〉 =

∑
α̃

|α̃〉〈α̃|α〉 =
∑
α̃

〈α̃|α〉|α̃〉 =
∑
α̃

〈α̃|α〉a†α̃|0〉. (64)

We use this to conclude that
a†α =

∑
α̃

〈α̃|α〉a†α̃. (65)

Taking the adjoint of this equation gives the transformation rule for the annihilation opera-
tors:

aα =
∑
α̃

〈α|α̃〉aα̃. (66)

The inverse transformations can be derived in the same way (or more simply by interchanging
α and α̃ in the expressions so far):

a†α̃ =
∑
α

〈α|α̃〉a†α, (67)

aα̃ =
∑
α

〈α̃|α〉aα. (68)
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From these results we can also find the transformation rules for the wavefunctions:

φα(x) = 〈x|α〉 = 〈x|

(∑
α̃

〈α̃|α〉|α̃〉

)
=
∑
α̃

〈α̃|α〉〈x|α̃〉 =
∑
α̃

〈α̃|α〉φ̃α̃(x), (69)

and similarly

φ̃α̃(x) =
∑
α

〈α|α̃〉φα(x). (70)

The basis transformations are unitary transformations. To see this, consider the matrix D
defined by the matrix elements entering the transformations: Dα̃α ≡ 〈α̃|α〉. D is a unitary
matrix, since

δα̃,β̃ = 〈α̃|β̃〉 =
∑
γ

〈α̃|γ〉〈γ|β̃〉 =
∑
γ

〈α̃|γ〉〈β̃|γ〉∗

=
∑
γ

Dα̃γD
∗
β̃γ

=
∑
γ

Dα̃γ(D
†)γβ̃ = (DD†)α̃β̃, ⇒ DD† = I. (71)

The basis transformations preserve (anti-)commutation relations. In other words, the cre-
ation/annihilation operators in the new basis satisfy the same kinds of (anti-)commutation
relations as the creation/annihilation operators in the old basis. To see this, let us define

[A,B]ζ ≡ AB + ζBA, (72)

where ζ = −1 gives the commutator (appropriate for bosons) and ζ = +1 gives the anti-
commutator (appropriate for fermions). Thus, for example, from the fact that [aα, a

†
α′ ]ζ =

δαα′ it follows that

[aα̃, a
†
α̃′ ]ζ =

∑
α,α′

〈α̃|α〉〈α′|α̃′〉 [aα, a†α′ ]ζ︸ ︷︷ ︸
δαα′

= 〈α̃|α̃′〉 = δα̃,α̃′ . (73)

Similarly, it is easily shown that [aα̃, aα̃′ ]ζ = [a†α̃, a
†
α̃′ ]ζ = 0 just like the corresponding (anti-

)commutators in the old basis.

3.1 Proof of the second-quantized representation for single-particle
operators

We will now give a proof of the second-quantized representation for single-particle operators
presented earlier (Eqs. (43) and (57)). Consider an arbitrary single-particle operator

Ô =
N∑
i=1

ôi. (74)

Let us choose {|α̃〉} to be the single-particle basis of eigenstates of ô, i.e.

ô|α̃〉 = oα̃|α̃〉 (75)
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where oα̃ is the eigenvalue of ô associated with the eigenstate |α̃〉. Then we claim that the
second-quantized representation of Ô can be written

Ô =
∑
α̃

oα̃n̂α̃ (76)

where n̂α̃ = a†α̃aα̃ is the number operator for state |α̃〉. To prove this, we calculate the matrix

elements of Ô in both first and second quantization and show that both formalisms give the
same result (here, we use the many-particle basis that is built from the single-particle basis
{|α̃〉}). Consider then the matrix element 〈Φ′|Ô|Φ〉 where |Φ〉 and |Φ′〉 are two arbitrary
basis states in this many-particle basis set. Using second quantization this matrix element
is

〈Φ′|Ô|Φ〉 = 〈n′α̃1
, n′α̃2

, . . . |
∑
α̃

oα̃n̂α̃|nα̃1 , nα̃2 , . . .〉

=
∑
α̃

oα̃nα̃〈n′α̃1
, n′α̃2

, . . . |nα̃1 , nα̃2 , . . .〉

= δΦ,Φ′

∑
α̃

oα̃nα̃. (77)

If we instead use first quantization we get the same result

〈Φ′|Ô|Φ〉 =

∫
dNx Φ′∗(x1, . . . , xN)

N∑
i=1

ô(xi)Φ(x1, . . . , xN)

=
∑
α̃

oα̃nα̃

∫
dNx Φ′∗(x1, . . . , xN)Φ(x1, . . . , xN)

= δΦ,Φ′

∑
α̃

oα̃nα̃, (78)

which proves (76). Note again that in (76) the single-particle basis used is the one that
diagonalizes ô, i.e. this expression for Ô is not valid for an arbitrary basis. However,
starting from this expression we can use the basis transformations considered earlier to
derive an expression for Ô that is valid in an arbitrary basis:

Ô =
∑
α̃

oα̃a
†
α̃aα̃ =

∑
α̃

oα̃

(∑
α

〈α|α̃〉a†α

)(∑
β

〈α̃|β〉aβ

)

=
∑
α,β

〈α|

(∑
α̃

|α̃〉oα̃〈α̃|

)
︸ ︷︷ ︸

ô

|β〉a†αaβ =
∑
α,β

〈α|ô|β〉a†αaβ. (79)
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Here we used that the eigenvalue equation ô|α̃〉 = oα̃|α̃〉 implies that we can write ô = ôI =
ô
∑

α̃ |α̃〉〈α̃| =
∑

α̃ oα̃|α̃〉〈α̃| =
∑

α̃ |α̃〉oα̃〈α̃|. The matrix element 〈α|ô|β〉 can be written8

〈α|ô|β〉 =

∫
dx

∫
dx′ 〈α|x〉 〈x|ô|x′〉︸ ︷︷ ︸

ô(x)δ(x−x′)

〈x′|β〉 =

∫
dx 〈α|x〉ô(x)〈x|β〉 =

∫
dx φ∗α(x)ô(x)φβ(x).

(80)
As Eqs. (79)-(80) are precisely Eqs. (43) (equivalently (57)) and (44), this concludes the
proof of these results.

4 Field operators

In this section we consider the creation and annihilation operators in the single-particle basis
consisting of the states |x〉 where, as before, x = (r, s). The creation and annihilation oper-
ators in this basis are called field operators and are denoted ψ̂†(x) and ψ̂(x). Thus, rather
than putting the state label as a subscript as usual, it is here instead written as an argu-
ment. We also put a hat on the field operators to avoid confusing them with wavefunctions.
Using Eqs. (67)-(68), the field operators can be written in terms of the creation/annihilation
operators in some other basis {|α〉} as

ψ̂†(x) =
∑
α

〈α|x〉a†α =
∑
α

φ∗α(x)a†α, (81)

ψ̂(x) =
∑
α

〈x|α〉aα =
∑
α

φα(x)aα. (82)

These field operators respectively create and annihilate a particle at space-spin coordinate
x. The field operators obey the (anti-)commutation relations (again, ζ = ∓ corresponds to
bosons/fermions)

[ψ̂(x), ψ̂(x′)]ζ = [ψ̂†(x), ψ̂†(x′)]ζ = 0, (83)

[ψ̂(x), ψ̂†(x′)]ζ = δ(x− x′). (84)

These relations follow directly from the results derived for the (anti-)commutators in the
previous section. Note that δ(x− x′) in Eq. (84) comes from 〈x|x′〉 (see Eq. (73)); we here
get a Dirac delta instead of a Kronecker delta because x is a continuous rather than discrete
label and so it is not possible to normalize the states {|x〉} to 1.

8Note that 〈x|ô|x′〉 = ô(x)δ(x − x′) is valid also if ô is not diagonal in the x-basis, for example if
ô is the momentum operator p̂ or some power of it. To see this, let’s forget about spin for simplicity
and take x to mean position only. Then from [x̂, p̂] = i~ we get 〈x|[x̂, p̂]|x′〉 = i~δ(x − x′). On the
other hand, 〈x|[x̂, p̂]|x′〉 = 〈x|(x̂p̂ − p̂x̂)|x′〉 = (x − x′)〈x|p̂|x′〉. Therefore 〈x|p̂|x′〉 = i~δ(x − x′)/(x − x′).
Now use (d/dx)δ(x − x′) = (du/dx)(d/du)δ(u) with u = x − x′. Using (d/du)δ(u) = −δ(u)/u this gives
(d/dx)δ(x − x′) = −δ(x − x′)/(x − x′). Thus 〈x|p̂|x′〉 = −i~(d/dx)δ(x − x′) which is on the claimed form
with p̂(x) = −i~(d/dx).
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The second-quantization representation of single- and two-particle operators using the {|x〉}
basis reads

Ĥ0 =

∫
dx ψ̂†(x)ĥ(x)ψ̂(x), (85)

ĤI =
1

2

∫
dx

∫
dx′ ψ̂†(x)ψ̂†(x′)v̂(x, x′)ψ̂(x′)ψ̂(x). (86)

The correctness of (85) is easily verified by inserting (81) and (82) which immediately leads
back to the general form (43) for single-particle operators which we already proved in Sec.
3.1. Furthermore, in a tutorial you will study so-called density operators and use these to
prove Eq. (86). Then inserting (81)-(82) leads to the general form (45) for two-particle
operators.
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