Second-quantization representation of the Hamiltonian of an inter-
acting electron gas in an external potential

As a first concrete example of the second quantization formalism, we consider a gas of
electrons interacting via the Coulomb interaction, and which may also be subjected to an
external potential. The Hamiltonian for the electrons is given by

H=T+U+V (1)

where T' is the kinetic energy operator, U is the external potential (assumed to be spin-
independent; it could e.g. be the periodic potential due to the crystal lattice in a crystalline
solid), and V' is the Coulomb interaction between the electrons. In first quantization,
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where u(r) is the external potential felt by an electron at position r and
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We take the system to be a cube of side lengths L and volume Q = L3. For convenience we
impose periodic boundary conditions in all 3 spatial directions. Thus the point (z = L, y, 2)
is identified with the point (z = 0,y,2), (z,y = L, 2) is identified with (z,y = 0,z) and
(z,y,2 = L) is identified with (z,y,z = 0).!

Let us find the second-quantization representation of H expressed in terms of the momentum-
spin (i.e. a = (k,o0)) single-particle basis. The single-particle basis functions are thus
eigenfunctions of the momentum operator p and z-component S* of the spin operator for a
single electron, and are given by
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1Please note that the symbol z is used for two different things in these notes: the z coordinate in real
space and the total space-spin coordinate x = (7, s); hopefully it should be clear from the context which of
the two meanings is intended.
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with s, 0 taking the possible values £1/2 =7, |. The periodic boundary conditions imply
that only wavevectors k on the form
2T

k= f(nx,ny,nz) (8)
with n; (i = z,y, z) being arbitrary integers, are allowed. For example, the identification of
r=0and x = L gives ¢(z = 0) = ¢(x = L), from which it follows that 1 = e*=L and thus
k, = 2mn, /L for integer n,. The eigenfunctions {¢,(x)} form a complete and orthonormal
set. Let us check the orthonormality:
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The kinetic energy operator 7' is a single-particle operator, so its second-quantization rep-
resentation is given by
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where the matrix element

@) = [t o) (7)) bule)

21.2
- X [ (i) (5)
0 2m

H2k?
= 5 O (12)

Thus the matrix elements of the the kinetic energy operator p?/2m for a single particle are
diagonal in this basis. This should be entirely as expected (and is the reason why we chose
this basis to begin with): given that the basis functions are eigenfunctions of p, they are
also eigenfunctions of p?/2m. Putting this result back into (10) gives

h2k?
T=>" o el Cro. (13)
ko

Thus the diagonality implies that 7" becomes just a linear combination of number operators
chackU = Nig-



Similarly, the second-quantized representation of the external potential U, which is also a
single-particle operator, becomes

0= Sl o (14

where
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where u, is the Fourier transform of u(r). Thus
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which describes a scattering process in which an electron is scattered from momentum k to
momentum k + q. As a special case, note that if u(r) = u, i.e. a constant independent
of r, so that the system is translationally invariant, we have %uq = udq,0, in which case U
becomes diagonal in the (k, o) basis.

Finally, the second-quantized representation of the electron-electron interaction V', which
is a two-particle operator, is
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where, writing a = (ky,01), 5 = (ka, 02), 0 = (k3, 03), and v = (ky4, 04), we have
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Let us define R = r — 7’ and change integration variables to R and r’. The integrals then
factorize as follows:
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where v, is the Fourier transform of v(r). Thus
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which gives
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Doing the summation over k; and over o3 and o, then gives (after renaming oy = o, 09 = 0')
V = 1 v cl b o (23)
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Let us define new summation variables k, k', and q by

ki=k, ki=kK, k,=k' —q. (24)
This gives
ki+ks—kys = k+gq, (25)
ks—ky = q. (26)
Thus 1
V= 20 Z Vg Z cLJrq’UcL,_q’U,ck/Ufckg. (27)
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This expression describes a scattering process in which two electrons scatter by exchanging
momentum q. Before the scattering the electrons have momenta k and k/, after the scattering
the electrons have momenta k + q and k' — q. Note that the total momentum k + k' is
conserved in the scattering process. This is a consequence of the translational invariance of
the interaction, i.e. the fact that it only depends on 7 — 7', not on r and 7’ separately. Also
note that since the Coulomb interaction (5) is spin-independent, the electrons spins are not
affected by the scattering process. A diagrammatic representation of the scattering process
is shown in the figure.

Mathematically, the scattering is described by the annihilation of the incoming electrons
with momentum k and k' and the creation of the outgoing electrons with momentum k + g
and k' — q.



