
Second-quantization representation of the Hamiltonian of an inter-
acting electron gas in an external potential

As a first concrete example of the second quantization formalism, we consider a gas of
electrons interacting via the Coulomb interaction, and which may also be subjected to an
external potential. The Hamiltonian for the electrons is given by

H = T + U + V (1)

where T is the kinetic energy operator, U is the external potential (assumed to be spin-
independent; it could e.g. be the periodic potential due to the crystal lattice in a crystalline
solid), and V is the Coulomb interaction between the electrons. In first quantization,

T = −
N∑
i=1

~2

2m
∇2
i , (2)

U =
N∑
i=1

u(ri), (3)

V =
N∑
i,j

i 6=j

v(ri, rj) (4)

where u(r) is the external potential felt by an electron at position r and

v(r, r′) = v(r − r′) =
e2

4πε0|r − r′|
. (5)

We take the system to be a cube of side lengths L and volume Ω = L3. For convenience we
impose periodic boundary conditions in all 3 spatial directions. Thus the point (x = L, y, z)
is identified with the point (x = 0, y, z), (x, y = L, z) is identified with (x, y = 0, z) and
(x, y, z = L) is identified with (x, y, z = 0).1

Let us find the second-quantization representation of H expressed in terms of the momentum-
spin (i.e. α = (k, σ)) single-particle basis. The single-particle basis functions are thus
eigenfunctions of the momentum operator p and z-component Sz of the spin operator for a
single electron, and are given by

φα(x) = φkσ(r, s) =
1√
Ω
eik·rχσ(s) (6)

where2

χσ(s) = δsσ (7)

1Please note that the symbol x is used for two different things in these notes: the x coordinate in real
space and the total space-spin coordinate x = (r, s); hopefully it should be clear from the context which of
the two meanings is intended.

2In the standard matrix representation (setting ~ = 1), Sz = 1
2

(
1 0
0 −1

)
with eigenstates | ↑ =

+1/2〉 =
(

1
0

)
, | ↓ = −1/2〉 =

(
0
1

)
, giving χσ(s) ≡ 〈s|σ〉 = δsσ.
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with s, σ taking the possible values ±1/2 =↑, ↓. The periodic boundary conditions imply
that only wavevectors k on the form

k =
2π

L
(nx, ny, nz) (8)

with ni (i = x, y, z) being arbitrary integers, are allowed. For example, the identification of
x = 0 and x = L gives φ(x = 0) = φ(x = L), from which it follows that 1 = eikxL and thus
kx = 2πnx/L for integer nx. The eigenfunctions {φα(x)} form a complete and orthonormal
set. Let us check the orthonormality:∫

dx φ∗α′(x)φα(x) =

∫
d3r

∑
s

φ∗k′σ′(r, s)φkσ(r, s)

=
1

Ω

∫
d3r ei(k−k′)·r︸ ︷︷ ︸
δkk′

∑
s

δσ′sδσs︸ ︷︷ ︸
δσσ′

= δkk′δσσ′ = δαα′ . (9)

The kinetic energy operator T is a single-particle operator, so its second-quantization rep-
resentation is given by

T =
∑
α,α′

〈α′| p
2

2m
|α〉c†α′cα (10)

where the matrix element

〈α′| p
2

2m
|α〉 =

∫
dx φ∗α′(x)

(
− ~2

2m
∇2

)
φα(x)

=
∑
s

∫
d3r

(
1√
Ω
e−ik

′·rδsσ′

)(
− ~2

2m
∇2

)(
1√
Ω
eik·rδsσ

)
(11)

=
∑
s

∫
d3r

(
1√
Ω
e−ik

′·rδsσ′

)(
~2k2

2m

)(
1√
Ω
eik·rδsσ

)

=
~2k2

2m

(
1

Ω

∫
d3r ei(k−k′)·r

)
︸ ︷︷ ︸

δkk′

(∑
s

δsσ′δsσ

)
︸ ︷︷ ︸

δσσ′

=
~2k2

2m
δkk′δσσ′ . (12)

Thus the matrix elements of the the kinetic energy operator p2/2m for a single particle are
diagonal in this basis. This should be entirely as expected (and is the reason why we chose
this basis to begin with): given that the basis functions are eigenfunctions of p, they are
also eigenfunctions of p2/2m. Putting this result back into (10) gives

T =
∑
kσ

~2k2

2m
c†kσckσ. (13)

Thus the diagonality implies that T becomes just a linear combination of number operators
c†kσckσ ≡ n̂kσ.
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Similarly, the second-quantized representation of the external potential U , which is also a
single-particle operator, becomes

U =
∑
α,α′

〈α′|u|α〉c†α′cα (14)

where

〈α′|u|α〉 =

∫
dx φ∗α′(x)u(r)φα(x)

=
∑
s

∫
d3r

(
1√
Ω
e−ik

′·rδsσ′

)
u(r)

(
1√
Ω
eik·rδsσ

)
(15)

=
1

Ω

∫
d3r u(r)ei(k−k′)·r︸ ︷︷ ︸

uk′−k

∑
s

δsσ′δsσ

=
1

Ω
uk′−k δσσ′ (16)

where uq is the Fourier transform of u(r). Thus

U =
1

Ω

∑
kσk′σ′

uk′−kδσσ′c
†
k′σ′ckσ =

1

Ω

∑
kqσ

uq c
†
k+q,σckσ (17)

which describes a scattering process in which an electron is scattered from momentum k to
momentum k + q. As a special case, note that if u(r) = u, i.e. a constant independent
of r, so that the system is translationally invariant, we have 1

Ω
uq = uδq,0, in which case U

becomes diagonal in the (k, σ) basis.
Finally, the second-quantized representation of the electron-electron interaction V , which

is a two-particle operator, is

V =
1

2

∑
α,β,γ,δ

〈αβ|v|γδ〉c†αc
†
βcδcγ, (18)

where, writing α = (k1, σ1), β = (k2, σ2), δ = (k3, σ3), and γ = (k4, σ4), we have

〈αβ|v|γδ〉 =

∫
dx

∫
dx φ∗α(x)φ∗β(x′)v(x, x′)φγ(x)φδ(x

′) =
∑
s

∫
d3r
∑
s′

∫
d3r′(

1√
Ω
e−ik1·rδsσ1

)(
1√
Ω
e−ik2·r′δs′σ2

)
v(r − r′)

(
1√
Ω
eik4·rδsσ4

)(
1√
Ω
eik3·r′δs′σ3

)
=

(∑
s

δsσ1δsσ4

)(∑
s′

δs′σ2δs′σ3

)

· 1

Ω2

∫
d3r

∫
d3r′ v(r − r′)e−i(k1−k4)·re−i(k2−k3)·r′ (19)

Let us define R = r − r′ and change integration variables to R and r′. The integrals then
factorize as follows:

1

Ω

∫
d3Rv(R)e−i(k1−k4)·R︸ ︷︷ ︸

≡vk1−k4

· 1

Ω

∫
d3r′ e−i(k2−k3+k1−k4)·r′︸ ︷︷ ︸

=δk1,k4+k3−k2

(20)
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where vq is the Fourier transform of v(r). Thus

〈αβ|v|γδ〉 =
1

Ω
δσ1σ4δσ2σ3δk1,k4+k3−k2vk1−k4 (21)

which gives

V =
1

2Ω

∑
k1,k2,k3,k4,σ1,σ2,σ3,σ4

δσ1σ4δσ2σ3δk1,k4+k3−k2vk1−k4c
†
k1σ1

c†k2σ2
ck3σ3ck4σ4 (22)

Doing the summation over k1 and over σ3 and σ4 then gives (after renaming σ1 ≡ σ, σ2 ≡ σ′)

V =
1

2Ω

∑
σ,σ′

∑
k2,k3,k4

vk3−k2 c
†
k4+k3−k2,σ

c†k2σ′
ck3σ′ck4σ. (23)

Let us define new summation variables k, k′, and q by

k4 ≡ k, k3 ≡ k′, k2 ≡ k′ − q. (24)

This gives

k4 + k3 − k2 = k + q, (25)

k3 − k2 = q. (26)

Thus

V =
1

2Ω

∑
q

vq

∑
k,σ

k′,σ′

c†k+q,σc
†
k′−q,σ′ck′σ′ckσ. (27)

This expression describes a scattering process in which two electrons scatter by exchanging
momentum q. Before the scattering the electrons have momenta k and k′, after the scattering
the electrons have momenta k + q and k′ − q. Note that the total momentum k + k′ is
conserved in the scattering process. This is a consequence of the translational invariance of
the interaction, i.e. the fact that it only depends on r− r′, not on r and r′ separately. Also
note that since the Coulomb interaction (5) is spin-independent, the electrons spins are not
affected by the scattering process. A diagrammatic representation of the scattering process
is shown in the figure.

Mathematically, the scattering is described by the annihilation of the incoming electrons
with momentum k and k′ and the creation of the outgoing electrons with momentum k + q
and k′ − q.
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