TFY4210, Quantum theory of many-particle systems, 2015: Tutorial 1

1. Many-particle wavefunctions.

Consider an arbitrary Hermitian single-particle operator \hat{O} . In the "first quantization" formalism, \hat{O} takes the form

$$\hat{O} = \sum_{i=1}^{N} \hat{o}_i \tag{1}$$

where N is the number of particles in the system. Let $\phi_{\nu}(x)$ and o_{ν} be the eigenfunctions and associated eigenvalues of \hat{o} , i.e.

$$\hat{o}\,\phi_{\nu}(x) = o_{\nu}\phi_{\nu}(x). \tag{2}$$

Here ν is a set of quantum numbers which completely characterize the single-particle eigenfunctions. As discussed in the lectures, we can use these to construct a basis set for manyparticle wavefunctions. The (normalized) basis functions can be written

$$\Phi_{\nu_1,\nu_2,\dots,\nu_N}(x_1,x_2,\dots,x_N) = \frac{1}{\sqrt{N!}\sqrt{\prod_{\nu} n_{\nu}!}} \sum_{P \in S_N} \xi^{t_P} \cdot P\phi_{\nu_1}(x_1)\phi_{\nu_2}(x_2)\dots\phi_{\nu_N}(x_N)$$
(3)

where $\xi = \pm 1$ for bosons/fermions and t_P is the number of transpositions (2-particle permutations) associated with the permutation P.¹ S_N is the set of all N! permutations. Furthermore, n_{ν} is the number of particles in the single-particle state ϕ_{ν} in the many-particle state $\Phi_{\nu_1,\nu_2,\ldots,\nu_N}$ (for fermions this can only be 0 or 1, hence $\sqrt{\prod_{\nu} n_{\nu}!} = 1$ in the fermionic case and can therefore be omitted).

(a) Write down an example of a basis function for a system of 3 fermions where all singleparticle states ν_1, ν_2, ν_3 are different (write the state out explicitly, i.e. all 3! = 6 terms).

(b) Demonstrate that the function changes sign if the coordinates of two particles are interchanged, e.g. x_1 and x_2 . Furthermore, demonstrate that if two or more of the single-particle states are chosen to be the same, the basis function vanishes. These properties are in accordance with the Pauli exclusion principle.

(c) Show that $\Phi_{\nu_1,\nu_2,\dots,\nu_N}$ as given in (3) is an eigenfunction of \hat{O} with eigenvalue $\sum_{\nu} o_{\nu} n_{\nu}$.

¹As discussed in the lectures, t_P is not unique, but its evenness/oddness is, so that the sign ξ^{t_P} is well-defined.

2. Fermionic creation and annihilation operators.

(a) Calculate $c_3 c_2^{\dagger} | 1_1, 0_2, 1_3, \ldots \rangle$.

(b) Use the definitions of the operators c_{ν}^{\dagger} and c_{ν} to show that these operators satisfy the defining property of adjoint operators, i.e.

$$\langle \bar{n} | c_{\nu} | n \rangle = \langle n | c_{\nu}^{\dagger} | \bar{n} \rangle^*.$$
(4)

Here $|n\rangle \equiv |n_1, n_2, \ldots\rangle$ and $|\bar{n}\rangle \equiv |\bar{n}_1, \bar{n}_2, \ldots\rangle$ are two arbitrary basis states for a fermionic many-particle system.

(c) Show that the fermionic creation and annihilation operators satisfy

$$\{c_{\mu}, c_{\nu}^{\dagger}\} = \delta_{\mu,\nu}.\tag{5}$$

In your proof, treat the two cases $\mu = \nu$ and $\mu \neq \nu$ separately (for the latter case you may limit your analysis to $\mu < \nu$ for simplicity).

(d) Use the fermionic anti-commutation relations to show that the fermionic number operator $\hat{n}_{\nu} \equiv c^{\dagger}_{\nu} c_{\nu}$ satisfies

$$\hat{n}_{\nu}^2 = \hat{n}_{\nu}.\tag{6}$$

Use this result to deduce the possible eigenvalues of \hat{n}_{ν} .

3. Some useful commutator expressions.

(a) Show that, for arbitrary operators A, B, and C,

$$[AB,C] = A[B,C]_{\zeta} - \zeta[A,C]_{\zeta}B,\tag{7}$$

where $[A, B]_{\zeta} \equiv AB + \zeta BA$, with $\zeta = \mp 1$ corresponding to the commutator and anticommutator, respectively.

(b) Show that, for both bosonic and fermionic creation and annihilation operators,

$$[\hat{n}_{\mu}, c_{\nu}^{\dagger}] = \delta_{\mu,\nu} c_{\nu}^{\dagger}.$$

$$\tag{8}$$

$$[\hat{n}_{\mu}, c_{\nu}] = -\delta_{\mu,\nu} c_{\nu}.$$
(9)