
TFY4210, Quantum theory of many-particle systems, 2016:
Solution to Tutorial 1

1. Many-particle wavefunctions.

(i) Since we are dealing with fermions, ξ = −1. Let’s assume that our chosen ordering of
the states in the single-particle basis set {ν} is such that ν1 < ν2 < ν3. Then

Φν1,ν2,ν3(x1, x2, x3) =
1√
3!

∑
P∈S3

(−1)tP · Pφν1(x1)φν2(x2)φν3(x3). (1)

There are 3! = 6 permutations of the starting list (ν1, ν2, ν3). They are given in the table be-
low, together with examples of the product of transpositions Pjk used to obtain them from the
starting list (recall that Pjk permutes the entries in positions j and k in the list). For exam-
ple, the fourth permutation in the table can be written P13P12(ν1, ν2, ν3) = P13(ν2, ν1, ν3) =
(ν3, ν1, ν2).

P Product of transpositions tP (−1)tP

(ν1, ν2, ν3) 0 1
(ν1, ν3, ν2) P23 1 −1
(ν2, ν1, ν3) P12 1 −1
(ν3, ν1, ν2) P13P12 2 1
(ν2, ν3, ν1) P12P13 2 1
(ν3, ν2, ν1) P13 1 −1

From the table we see that Eq. (1) becomes

Φν1,ν2,ν3(x1, x2, x3) =
1√
3!

[φν1(x1)φν2(x2)φν3(x3)− φν1(x1)φν3(x2)φν2(x3)

− φν2(x1)φν1(x2)φν3(x3) + φν3(x1)φν1(x2)φν2(x3)

+ φν2(x1)φν3(x2)φν1(x3)− φν3(x1)φν2(x2)φν1(x3)]. (2)

You can verify that this expression can be written as a determinant:

Φν1,ν2,ν3(x1, x2, x3) =
1√
3!

∣∣∣∣∣∣∣
φν1(x1) φν1(x2) φν1(x3)
φν2(x1) φν2(x2) φν2(x3)
φν3(x1) φν3(x2) φν3(x3)

∣∣∣∣∣∣∣ (3)

(ii) For this question the determinant form (3) is convenient. We use the following prop-
erties of the determinant of a matrix: if two columns are interchanged, or if two rows are
interchanged, the determinant changes sign. Interchanging x1 and x2 in (3) corresponds
to interchanging columns 1 and 2 in the matrix, hence Φ changes sign. Next, take two of
the single-particle states to be identical, e.g. ν1 and ν2. This means that rows 1 and 2 of
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the matrix become identical. Interchanging these rows thus has no effect on the matrix, but
the determinant must change sign. Hence det | . . . | = − det | . . . |, which implies det | . . . | = 0.

(iii) To avoid unnecessary clutter in some of the expressions that follow, define C ≡ 1√
N !
√∏

ν
nν !

.

We get

ÔΦν1,ν2,...,νN (x1, x2, . . . , xN) =

(
N∑
i=1

ôi

)
Φν1,ν2,...,νN (x1, x2, . . . , xN)

= C
∑
P∈SN

ξtP
(

N∑
i=1

ôi

)
φPν1(x1)φPν2(x2) . . . φPνN (xN). (4)

Here (Pν1, Pν2, . . . , PνN) defines the permutation P of the starting list (ν1, ν2, . . . , νN). The
operator ôi only involves the coordinates xi. For example, a common situation/choice is that

ôi = − h̄2

2m
∇2
i + u(xi), where u(x) is some external potential (which could be 0). Using the

eigenvalue equation
ôiφν(xi) = oνφν(xi) (5)

gives

ÔΦν1,ν2,...,νN (x1, x2, . . . , xN) = C
∑
P∈SN

ξtP
(

N∑
i=1

oPνi

)
φPν1(x1)φPν2(x2) . . . φPνN (xN). (6)

Now note that the sum of the eigenvalues is independent of the permutation P :

N∑
i=1

oPνi = oPν1 + oPν2 + . . .+ oPνN =
∑
ν

oνnν (7)

where (as before) nν is the number of particles in the single-particle state ν in the many-
particle state Φν1,ν2,...,νN (i.e. nν is the number of times the function φν appears in each term
in Φν1,ν2,...,νN ). This sum can therefore be moved outside the sum over P , giving the desired
result:

ÔΦν1,ν2,...,νN =

(∑
ν

oνnν

)
Φν1,ν2,...,νN . (8)

2. Fermionic creation and annihilation operators.

(a)

c3c
†
2|11, 02, 13, . . .〉 = −c3|11, 12, 13, . . .〉 = −(−1)2|11, 12, 03, . . .〉 = −|11, 12, 03, . . .〉. (9)

(b) We have

cν |n〉 = (−1)
∑

ρ<ν
nρnν |n1, . . . , 0ν , . . .〉, (10)
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so
〈n̄|cν |n〉 = (−1)

∑
ρ<ν

nρnν〈n̄|n1, . . . , 0ν , . . .〉 = (−1)
∑

ρ<ν
nρnνδn̄ν ,0

∏
ρ6=ν

δnρ,n̄ρ . (11)

On the other hand,

c†ν |n̄〉 = (−1)
∑

ρ<ν
n̄ρ(1− n̄ν)|n̄1, . . . , 1ν , . . .〉, (12)

so

〈n|c†ν |n̄〉∗ = (−1)
∑

ρ<ν
n̄ρ(1− n̄ν)〈n|n̄1, . . . , 1ν , . . .〉 = (−1)

∑
ρ<ν

n̄ρ(1− n̄ν)δnν ,1
∏
ρ 6=ν

δnρ,n̄ρ (13)

(since the matrix element is real, taking the complex conjugate has no effect). The product∏
ρ6=ν δnρ,n̄ρ is common to both (11) and (13), and implies that the exponent to which −1

is raised is the same in both expressions. Furthermore, since nν and n̄ν can only take the
values 0 or 1, it follows that δn̄ν ,0 = 1 − n̄ν and δnν ,1 = nν . So (11) and (13) are identical.
QED.

(c) It suffices to show that {cµ, c†ν}|n〉 = δµ,ν |n〉 where |n〉 is an arbitrary basis state. First
consider µ = ν. We have

cνc
†
ν |n〉 = (−1)

∑
ρ<ν

nρ(1− nν)cν | . . . , 1ν , . . .〉 =
[
(−1)

∑
ρ<ν

nρ
]2

︸ ︷︷ ︸
sign2=1

(1− nν) · 1| . . . , 0ν , . . .〉

= (1− nν)|n〉, (14)

where in the last line we replaced | . . . , 0ν , . . .〉 by |n〉, which is valid also for nν = 1 since
then the prefactor 1− nν makes the expression vanish. Furthermore,

c†νcν |n〉 = nν |n〉 (15)

since c†νcν is the number operator. So

(cνc
†
ν + c†νcν)|n〉 = (1− nν + nν)|n〉 = |n〉 = 1 · |n〉. (16)

For µ < ν we have

cµc
†
ν |n〉 = (−1)

∑
ρ<ν

nρ(1− nν)cµ| . . . , nµ, . . . , 1ν , . . .〉
= (−1)

∑
ρ<ν

nρ+
∑

ρ<µ
nρ(1− nν)nµ| . . . , 0µ, . . . , 1ν , . . .〉 (17)

and

c†νcµ|n〉 = (−1)
∑

ρ<µ
nρnµc

†
ν | . . . , 0µ, . . . , nν , . . .〉

= (−1)
∑

ρ<µ
nρ+

∑
ρ<ν

nρ+(0−nµ)nµ(1− nν)| . . . , 0µ, . . . , 1ν , . . .〉. (18)

So

(cµc
†
ν + c†νcµ)|n〉 = [1 + (−1)nµ ] (−1)

∑
ρ<ν

nρ+
∑

ρ<µ
nρnµ(1− nν)| . . . , 0µ, . . . , 1ν , . . .〉. (19)
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If nµ = 0 the rhs is 0 because of the factor nµ. If nµ = 1 the rhs is 0 because of the factor
[1 + (−1)nµ ]. Since these are the only values nµ can take, the rhs is 0 always, and we can
write

(cµc
†
ν + c†νcµ)|n〉 = 0 = 0 · |n〉 (µ < ν). (20)

One can show that the same result is obtained if µ > ν. So it follows that {cµ, c†ν} = δµ,ν .
QED.

(d) We have
n̂2
ν = n̂νn̂ν = c†ν cνc

†
ν︸︷︷︸

1−c†νcν

cν = c†νcν − c†νc†ν︸︷︷︸
0

cνcν = n̂ν . QED. (21)

That (c†ν)
2 = 0 follows from setting µ = ν in {c†µ, c†ν} = 0. (Of course, we could instead have

invoked the adjoint relation (cν)
2 = 0.) Since n̂2

ν = n̂ν , the corresponding relation also has
to hold for the eigenvalues nν , i.e. n2

ν = nν . The solutions to this equation are nν = 0 and
nν = 1 which therefore are the possible eigenvalues of n̂ν .

2. Some useful commutator expressions.

(a) We have (with ζ = ±1)

A[B,C]ζ − ζ[A,C]ζB = A(BC + ζCB)− ζ(AC + ζCA)B

= ABC + ζACB − ζACB︸ ︷︷ ︸
0

− ζ2︸︷︷︸
1

CAB

= [AB,C]. (22)

(b) Using Eq. (22) we get (with ζ = ±1 for fermionic/bosonic operators, respectively)

[n̂µ, c
†
ν ] = [c†µcµ, c

†
ν ] = c†µ [cµ, c

†
ν ]ζ︸ ︷︷ ︸

δµν

−ζ [c†µ, c
†
ν ]ζ︸ ︷︷ ︸

0

cµ = δµν c
†
µ, (23)

[n̂µ, cν ] = [c†µcµ, cν ] = c†µ [cµ, cν ]ζ︸ ︷︷ ︸
0

−ζ [c†µ, cν ]ζ︸ ︷︷ ︸
ζδµν

cµ = −δµν cµ. (24)

In the last expression we used that [c†µ, cν ]ζ = ζ[cν , c
†
µ], which follows from the general result

[B,A]ζ = ζ[A,B]ζ . (25)

(Proof: [B,A]ζ = BA+ ζAB = ζ(ζBA+ AB) = ζ[A,B]ζ .)
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