TFY4210, Quantum theory of many-particle systems, 2016: Solution to Tutorial 1

1. Many-particle wavefunctions.

(i) Since we are dealing with fermions, $\xi = -1$. Let's assume that our chosen ordering of the states in the single-particle basis set $\{\nu\}$ is such that $\nu_1 < \nu_2 < \nu_3$. Then

$$\Phi_{\nu_1,\nu_2,\nu_3}(x_1,x_2,x_3) = \frac{1}{\sqrt{3!}} \sum_{P \in S_3} (-1)^{t_P} \cdot P\phi_{\nu_1}(x_1)\phi_{\nu_2}(x_2)\phi_{\nu_3}(x_3).$$
(1)

There are 3! = 6 permutations of the starting list (ν_1, ν_2, ν_3) . They are given in the table below, together with examples of the product of transpositions P_{jk} used to obtain them from the starting list (recall that P_{jk} permutes the entries in positions j and k in the list). For example, the fourth permutation in the table can be written $P_{13}P_{12}(\nu_1, \nu_2, \nu_3) = P_{13}(\nu_2, \nu_1, \nu_3) =$ (ν_3, ν_1, ν_2) .

P	Product of transpositions	t_P	$(-1)^{t_P}$
(ν_1,ν_2,ν_3)		0	1
(ν_1, ν_3, ν_2)	P_{23}	1	-1
(ν_2, ν_1, ν_3)	P_{12}	1	-1
(ν_3, ν_1, ν_2)	$P_{13}P_{12}$	2	1
(u_2, u_3, u_1)	$P_{12}P_{13}$	2	1
(ν_3,ν_2,ν_1)	P_{13}	1	-1

From the table we see that Eq. (1) becomes

$$\Phi_{\nu_{1},\nu_{2},\nu_{3}}(x_{1},x_{2},x_{3}) = \frac{1}{\sqrt{3!}} [\phi_{\nu_{1}}(x_{1})\phi_{\nu_{2}}(x_{2})\phi_{\nu_{3}}(x_{3}) - \phi_{\nu_{1}}(x_{1})\phi_{\nu_{3}}(x_{2})\phi_{\nu_{2}}(x_{3})
- \phi_{\nu_{2}}(x_{1})\phi_{\nu_{1}}(x_{2})\phi_{\nu_{3}}(x_{3}) + \phi_{\nu_{3}}(x_{1})\phi_{\nu_{1}}(x_{2})\phi_{\nu_{2}}(x_{3})
+ \phi_{\nu_{2}}(x_{1})\phi_{\nu_{3}}(x_{2})\phi_{\nu_{1}}(x_{3}) - \phi_{\nu_{3}}(x_{1})\phi_{\nu_{2}}(x_{2})\phi_{\nu_{1}}(x_{3})].$$
(2)

You can verify that this expression can be written as a determinant:

$$\Phi_{\nu_1,\nu_2,\nu_3}(x_1,x_2,x_3) = \frac{1}{\sqrt{3!}} \begin{vmatrix} \phi_{\nu_1}(x_1) & \phi_{\nu_1}(x_2) & \phi_{\nu_1}(x_3) \\ \phi_{\nu_2}(x_1) & \phi_{\nu_2}(x_2) & \phi_{\nu_2}(x_3) \\ \phi_{\nu_3}(x_1) & \phi_{\nu_3}(x_2) & \phi_{\nu_3}(x_3) \end{vmatrix}$$
(3)

(ii) For this question the determinant form (3) is convenient. We use the following properties of the determinant of a matrix: if two columns are interchanged, or if two rows are interchanged, the determinant changes sign. Interchanging x_1 and x_2 in (3) corresponds to interchanging columns 1 and 2 in the matrix, hence Φ changes sign. Next, take two of the single-particle states to be identical, e.g. ν_1 and ν_2 . This means that rows 1 and 2 of the matrix become identical. Interchanging these rows thus has no effect on the matrix, but the determinant must change sign. Hence det $|\ldots| = -\det |\ldots|$, which implies det $|\ldots| = 0$.

(iii) To avoid unnecessary clutter in some of the expressions that follow, define $C \equiv \frac{1}{\sqrt{N!}\sqrt{\prod_{\nu} n_{\nu}!}}$. We get

$$\hat{O}\Phi_{\nu_{1},\nu_{2},\dots,\nu_{N}}(x_{1},x_{2},\dots,x_{N}) = \left(\sum_{i=1}^{N} \hat{o}_{i}\right) \Phi_{\nu_{1},\nu_{2},\dots,\nu_{N}}(x_{1},x_{2},\dots,x_{N}) \\
= C \sum_{P \in S_{N}} \xi^{t_{P}}\left(\sum_{i=1}^{N} \hat{o}_{i}\right) \phi_{P\nu_{1}}(x_{1}) \phi_{P\nu_{2}}(x_{2})\dots\phi_{P\nu_{N}}(x_{N}). \quad (4)$$

Here $(P\nu_1, P\nu_2, \ldots, P\nu_N)$ defines the permutation P of the starting list $(\nu_1, \nu_2, \ldots, \nu_N)$. The operator \hat{o}_i only involves the coordinates x_i . For example, a common situation/choice is that $\hat{o}_i = -\frac{\hbar^2}{2m}\nabla_i^2 + u(x_i)$, where u(x) is some external potential (which could be 0). Using the eigenvalue equation

$$\hat{o}_i \phi_\nu(x_i) = o_\nu \phi_\nu(x_i) \tag{5}$$

gives

$$\hat{O}\Phi_{\nu_1,\nu_2,\dots,\nu_N}(x_1,x_2,\dots,x_N) = C \sum_{P \in S_N} \xi^{t_P} \left(\sum_{i=1}^N o_{P\nu_i}\right) \phi_{P\nu_1}(x_1) \phi_{P\nu_2}(x_2) \dots \phi_{P\nu_N}(x_N).$$
(6)

Now note that the sum of the eigenvalues is independent of the permutation P:

$$\sum_{i=1}^{N} o_{P\nu_i} = o_{P\nu_1} + o_{P\nu_2} + \ldots + o_{P\nu_N} = \sum_{\nu} o_{\nu} n_{\nu}$$
(7)

where (as before) n_{ν} is the number of particles in the single-particle state ν in the manyparticle state $\Phi_{\nu_1,\nu_2,\dots,\nu_N}$ (i.e. n_{ν} is the number of times the function ϕ_{ν} appears in each term in $\Phi_{\nu_1,\nu_2,\dots,\nu_N}$). This sum can therefore be moved outside the sum over P, giving the desired result:

$$\hat{O}\Phi_{\nu_{1},\nu_{2},...,\nu_{N}} = \left(\sum_{\nu} o_{\nu} n_{\nu}\right) \Phi_{\nu_{1},\nu_{2},...,\nu_{N}}.$$
(8)

2. Fermionic creation and annihilation operators.

(a)

$$c_3 c_2^{\dagger} |1_1, 0_2, 1_3, \ldots \rangle = -c_3 |1_1, 1_2, 1_3, \ldots \rangle = -(-1)^2 |1_1, 1_2, 0_3, \ldots \rangle = -|1_1, 1_2, 0_3, \ldots \rangle.$$
(9)

(b) We have

$$c_{\nu}|n\rangle = (-1)^{\sum_{\rho < \nu} n_{\rho}} n_{\nu}|n_1, \dots, 0_{\nu}, \dots\rangle,$$
 (10)

 \mathbf{SO}

$$\langle \bar{n} | c_{\nu} | n \rangle = (-1)^{\sum_{\rho < \nu} n_{\rho}} n_{\nu} \langle \bar{n} | n_{1}, \dots, 0_{\nu}, \dots \rangle = (-1)^{\sum_{\rho < \nu} n_{\rho}} n_{\nu} \delta_{\bar{n}_{\nu}, 0} \prod_{\rho \neq \nu} \delta_{n_{\rho}, \bar{n}_{\rho}}.$$
 (11)

On the other hand,

$$c_{\nu}^{\dagger}|\bar{n}\rangle = (-1)^{\sum_{\rho < \nu} \bar{n}_{\rho}} (1 - \bar{n}_{\nu})|\bar{n}_{1}, \dots, 1_{\nu}, \dots\rangle,$$
(12)

 \mathbf{SO}

$$\langle n | c_{\nu}^{\dagger} | \bar{n} \rangle^{*} = (-1)^{\sum_{\rho < \nu} \bar{n}_{\rho}} (1 - \bar{n}_{\nu}) \langle n | \bar{n}_{1}, \dots, 1_{\nu}, \dots \rangle = (-1)^{\sum_{\rho < \nu} \bar{n}_{\rho}} (1 - \bar{n}_{\nu}) \delta_{n_{\nu}, 1} \prod_{\rho \neq \nu} \delta_{n_{\rho}, \bar{n}_{\rho}}$$
(13)

(since the matrix element is real, taking the complex conjugate has no effect). The product $\prod_{\rho \neq \nu} \delta_{n_{\rho}, \bar{n}_{\rho}}$ is common to both (11) and (13), and implies that the exponent to which -1 is raised is the same in both expressions. Furthermore, since n_{ν} and \bar{n}_{ν} can only take the values 0 or 1, it follows that $\delta_{\bar{n}_{\nu},0} = 1 - \bar{n}_{\nu}$ and $\delta_{n_{\nu},1} = n_{\nu}$. So (11) and (13) are identical. QED.

(c) It suffices to show that $\{c_{\mu}, c_{\nu}^{\dagger}\}|n\rangle = \delta_{\mu,\nu}|n\rangle$ where $|n\rangle$ is an arbitrary basis state. First consider $\mu = \nu$. We have

$$c_{\nu}c_{\nu}^{\dagger}|n\rangle = (-1)^{\sum_{\rho<\nu}n_{\rho}}(1-n_{\nu})c_{\nu}|\dots,1_{\nu},\dots\rangle = \underbrace{\left[(-1)^{\sum_{\rho<\nu}n_{\rho}}\right]^{2}}_{\text{sign}^{2}=1}(1-n_{\nu})\cdot1|\dots,0_{\nu},\dots\rangle$$
$$= (1-n_{\nu})|n\rangle, \tag{14}$$

where in the last line we replaced $|\ldots, 0_{\nu}, \ldots\rangle$ by $|n\rangle$, which is valid also for $n_{\nu} = 1$ since then the prefactor $1 - n_{\nu}$ makes the expression vanish. Furthermore,

$$c_{\nu}^{\dagger}c_{\nu}|n\rangle = n_{\nu}|n\rangle \tag{15}$$

since $c_{\nu}^{\dagger}c_{\nu}$ is the number operator. So

$$(c_{\nu}c_{\nu}^{\dagger} + c_{\nu}^{\dagger}c_{\nu})|n\rangle = (1 - n_{\nu} + n_{\nu})|n\rangle = |n\rangle = 1 \cdot |n\rangle.$$
(16)

For $\mu < \nu$ we have

$$c_{\mu}c_{\nu}^{\dagger}|n\rangle = (-1)^{\sum_{\rho<\nu}n_{\rho}}(1-n_{\nu})c_{\mu}|\dots,n_{\mu},\dots,1_{\nu},\dots\rangle$$
$$= (-1)^{\sum_{\rho<\nu}n_{\rho}+\sum_{\rho<\mu}n_{\rho}}(1-n_{\nu})n_{\mu}|\dots,0_{\mu},\dots,1_{\nu},\dots\rangle$$
(17)

and

$$c_{\nu}^{\dagger} c_{\mu} |n\rangle = (-1)^{\sum_{\rho < \mu} n_{\rho}} n_{\mu} c_{\nu}^{\dagger} |\dots, 0_{\mu}, \dots, n_{\nu}, \dots \rangle$$

= $(-1)^{\sum_{\rho < \mu} n_{\rho} + \sum_{\rho < \nu} n_{\rho} + (0 - n_{\mu})} n_{\mu} (1 - n_{\nu}) |\dots, 0_{\mu}, \dots, 1_{\nu}, \dots \rangle.$ (18)

So

$$(c_{\mu}c_{\nu}^{\dagger} + c_{\nu}^{\dagger}c_{\mu})|n\rangle = [1 + (-1)^{n_{\mu}}](-1)^{\sum_{\rho < \nu} n_{\rho} + \sum_{\rho < \mu} n_{\rho}} n_{\mu}(1 - n_{\nu})|\dots, 0_{\mu}, \dots, 1_{\nu}, \dots\rangle.$$
(19)

If $n_{\mu} = 0$ the rhs is 0 because of the factor n_{μ} . If $n_{\mu} = 1$ the rhs is 0 because of the factor $[1 + (-1)^{n_{\mu}}]$. Since these are the only values n_{μ} can take, the rhs is 0 always, and we can write

$$(c_{\mu}c_{\nu}^{\dagger} + c_{\nu}^{\dagger}c_{\mu})|n\rangle = 0 = 0 \cdot |n\rangle \quad (\mu < \nu).$$

$$(20)$$

One can show that the same result is obtained if $\mu > \nu$. So it follows that $\{c_{\mu}, c_{\nu}^{\dagger}\} = \delta_{\mu,\nu}$. QED.

(d) We have

$$\hat{n}_{\nu}^{2} = \hat{n}_{\nu}\hat{n}_{\nu} = c_{\nu}^{\dagger}\underbrace{c_{\nu}c_{\nu}^{\dagger}}_{1-c_{\nu}^{\dagger}c_{\nu}}c_{\nu} = c_{\nu}^{\dagger}c_{\nu} - \underbrace{c_{\nu}^{\dagger}c_{\nu}^{\dagger}}_{0}c_{\nu}c_{\nu} = \hat{n}_{\nu}. \quad \text{QED.}$$
(21)

That $(c_{\nu}^{\dagger})^2 = 0$ follows from setting $\mu = \nu$ in $\{c_{\mu}^{\dagger}, c_{\nu}^{\dagger}\} = 0$. (Of course, we could instead have invoked the adjoint relation $(c_{\nu})^2 = 0$.) Since $\hat{n}_{\nu}^2 = \hat{n}_{\nu}$, the corresponding relation also has to hold for the eigenvalues n_{ν} , i.e. $n_{\nu}^2 = n_{\nu}$. The solutions to this equation are $n_{\nu} = 0$ and $n_{\nu} = 1$ which therefore are the possible eigenvalues of \hat{n}_{ν} .

2. Some useful commutator expressions.

(a) We have (with $\zeta = \pm 1$)

$$A[B,C]_{\zeta} - \zeta[A,C]_{\zeta}B = A(BC + \zeta CB) - \zeta(AC + \zeta CA)B$$

= $ABC + \underbrace{\zeta ACB - \zeta ACB}_{0} - \underbrace{\zeta^{2}}_{1}CAB$
= $[AB,C].$ (22)

(b) Using Eq. (22) we get (with $\zeta = \pm 1$ for fermionic/bosonic operators, respectively)

$$[\hat{n}_{\mu}, c_{\nu}^{\dagger}] = [c_{\mu}^{\dagger}c_{\mu}, c_{\nu}^{\dagger}] = c_{\mu}^{\dagger} \underbrace{[c_{\mu}, c_{\nu}^{\dagger}]_{\zeta}}_{\delta_{\mu\nu}} - \zeta \underbrace{[c_{\mu}^{\dagger}, c_{\nu}^{\dagger}]_{\zeta}}_{0} c_{\mu} = \delta_{\mu\nu} c_{\mu}^{\dagger},$$
(23)

$$[\hat{n}_{\mu}, c_{\nu}] = [c_{\mu}^{\dagger} c_{\mu}, c_{\nu}] = c_{\mu}^{\dagger} \underbrace{[c_{\mu}, c_{\nu}]_{\zeta}}_{0} - \zeta \underbrace{[c_{\mu}^{\dagger}, c_{\nu}]_{\zeta}}_{\zeta \delta_{\mu\nu}} c_{\mu} = -\delta_{\mu\nu} c_{\mu}.$$
(24)

In the last expression we used that $[c^{\dagger}_{\mu}, c_{\nu}]_{\zeta} = \zeta[c_{\nu}, c^{\dagger}_{\mu}]$, which follows from the general result

$$[B,A]_{\zeta} = \zeta[A,B]_{\zeta}.$$
(25)

(Proof: $[B, A]_{\zeta} = BA + \zeta AB = \zeta(\zeta BA + AB) = \zeta[A, B]_{\zeta}$.)