TFY4210, Quantum theory of many-particle systems, 2016:
Solution to Tutorial 1

1. Many-particle wavefunctions.

(i) Since we are dealing with fermions, { = —1. Let’s assume that our chosen ordering of
the states in the single-particle basis set {v} is such that 11 < vy < 5. Then
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There are 3! = 6 permutations of the starting list (v, v, v3). They are given in the table be-
low, together with examples of the product of transpositions Pj; used to obtain them from the
starting list (recall that P, permutes the entries in positions j and k in the list). For exam-
ple, the fourth permutation in the table can be written Pi3Pio(v1, v, v3) = Pi3(vo, 14, 13) =
(v3, 11, 12).

P Product of transpositions | tp | (—1)'7
(11,12, v3) 0 1
(l/l,Vg,VQ) P23 ]_ —1
(1/2, v, ]/3) Plg ]_ —1
(1/37 v, 1/2) P13P12 2 1
(Vz, V3, Vl) Py Py3 2 1
(v3, V2, 11) P3| 1 -1

From the table we see that Eq. (1) becomes
1

[¢V1 ($1)¢V2 ($2)¢V3 (1’3) - ¢1/1 (x1)¢1/3 (1132)¢,,2 (xd)

1) By (02) Pug (23) + Gug (1) Py (T2) Doy (3)
1) us (T2)Duy (23) — ug (21) Py (22) Duy (23)]- (2)

You can verify that this expression can be written as a determinant:
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(ii) For this question the determinant form (3) is convenient. We use the following prop-
erties of the determinant of a matrix: if two columns are interchanged, or if two rows are
interchanged, the determinant changes sign. Interchanging x; and x5 in (3) corresponds
to interchanging columns 1 and 2 in the matrix, hence ® changes sign. Next, take two of
the single-particle states to be identical, e.g. 14 and 5. This means that rows 1 and 2 of

(I)l/l,yg,ug (xb X2, xd) =
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+ Ou,
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the matrix become identical. Interchanging these rows thus has no effect on the matrix, but
the determinant must change sign. Hencedet |...| = —det|...|, which impliesdet|...| = 0.

e . . . — 1
(iii) To avoid unnecessary clutter in some of the expressions that follow, define C' = IV
We get

N
O(I)zzl,ug,...,z/N (mlv X2, .. wa) = Z 61) (I)Vl,ug,...,VN (33'1, X2y ... ,iIZ'N)
=1

= C X € (320 draleonaen . na o). (8

PeSyN =1

Here (Pvy, Puvs, ..., Pry) defines the permutation P of the starting list (v, vs, ..., vy). The
operator o; only involves the coordinates x;. For example, a common situation/choice is that
0; = —%V? + u(z;), where u(x) is some external potential (which could be 0). Using the
eigenvalue equation

6’L¢l/(xl) - OZ/¢I/<xi> (5)

gives
. N
O(I)Vl,zlg,...,uN (1’1, Ty ,xN) = C Z ftP <Z OPw) ¢P1/1 <x1)¢PV2 (x2> fee ¢PVN (33']\]) (6)
PeSy =1

Now note that the sum of the eigenvalues is independent of the permutation P:

N
> 0py; = 0py, + 0pyy + .o Opyy = Y0y, (7)
=1 v

where (as before) n, is the number of particles in the single-particle state v in the many-
particle state ®,, ., ., (i.e. n, is the number of times the function ¢, appears in each term
in ®,, ,, ). This sum can therefore be moved outside the sum over P, giving the desired
result:

-----

OCI)m,I/g,...,VN = <Z 01/”1/) ®V1,V2,...7VN' (8)

2. Fermionic creation and annihilation operators.

(a)

03c£|11,02, 13, . > = —03|11, 12, 13, .. > = —(—1)2|117 12703, . > = —|11, 12,03, .. > (9)

(b) We have
cy|n> = (—1)Zp<unpny|n1,...70V,...>, (10)



SO
(Alesfn) = (=1)2Z0<"n, (Aln, .0y, ) = (<120 00,0 [] npm,e (1)
p#V
On the other hand,
A |a) = (=1)Zeer ™ (1 — @) |7ir, - .., Lo, ), (12)

SO

(nlch|m)* = (—1)Ze<™ (1= a,) (nfAy, ..., 1y, .. ) = (=1)20<e ™ (1 = 1,)6,1 [] 60, (13)
pF#v

(since the matrix element is real, taking the complex conjugate has no effect). The product
I1,0 On,n, is common to both (11) and (13), and implies that the exponent to which —1
is raised is the same in both expressions. Furthermore, since n, and n, can only take the
values 0 or 1, it follows that 65,0 = 1 —n, and 0,1 = n,. So (11) and (13) are identical.
QED.

(c) It suffices to show that {c,,c}}|n) = d,,|n) where |n) is an arbitrary basis state. First
consider y = v. We have

el = ()T (L= n)e . L) = (DD ™ (1= m) - 1], 0,, )

sign®=1

= (L=mny)n), (14)

where in the last line we replaced |...,0,,...) by |n), which is valid also for n, = 1 since
then the prefactor 1 — n, makes the expression vanish. Furthermore,

chevln) = nyln) (15)

since clc, is the number operator. So

(cyel +cle)n) = (1 —ny, +n,)|n) =|n) =1-|n). (16)
For p < v we have
cuchln) = (D20 ™ (1= n)eul s L)
= (=) X ™ o™ (1= )nu| e Oy ) (17)
and
chean) = (1) Ze<u™nuch 0, )
= (—1)Zp<u "ot "er(O*n“)nu(l — )|, 0py ey 1y, (18)
So

(cuch + che)ln) = [1+ (=1)™] (=1)2r<r ™ 0™ n, (1= )| o2, Oy Ly ). (19)



If n, = 0 the rhs is 0 because of the factor n,. If n, = 1 the rhs is 0 because of the factor
[1 + (—1)™]. Since these are the only values n, can take, the rhs is 0 always, and we can
write

(cuch +cle)in) =0=0-n) (u<v). (20)

One can show that the same result is obtained if > v. So it follows that {c,, ¢/} = d,.,.
QED.

(d) We have
n2 = n,n, =c c.cl ¢, =cle, —clel e,e, =n,. QED. (21)
~—~— ~—~—
l—c,tcl, 0

That (cf)? = 0 follows from setting 1 = v in {c},, ¢f,} = 0. (Of course, we could instead have
invoked the adjoint relation (c,)* = 0.) Since n? = 7, the corresponding relation also has
to hold for the eigenvalues n,, i.e. ng = n,. The solutions to this equation are n, = 0 and

n, = 1 which therefore are the possible eigenvalues of n,.

2. Some useful commutator expressions.

(a) We have (with ( = £1)

A[B,C)e = ¢[A,C)cB = A(BC +(CB) —((AC +(CA)B
= ABC +(ACB — (ACB — \ci CAB

0 1

— [AB,C]. (22)

(b) Using Eq. (22) we get (with ¢ = +£1 for fermionic/bosonic operators, respectively)

[ﬁua CJL] = [CLCW CH = CL [C,uv CHC —C [C}Lu CI]C Cpu = Ouv CL’ (23)
N—— ——
6;“/ 0
[N, c] = [CLCN, o) = CL [cus el —C [CL, clecy = =6 cp (24)
0 5
Copw

In the last expression we used that [c}, ¢,]c = ([c,, ¢]], which follows from the general result
[B, Al¢ = ¢[A, Bl (25)

(Proof: [B, Al = BA+ CAB = ((CBA + AB) = ([A, B)..)



