
TFY4210 Quantum theory of many-particle systems, 2016:
Solution to tutorial 2

1. Explicit connection between first and second quantization.

By our definition,

|x1, x2〉 =
1√
2!
ψ̂†(x1)ψ̂

†(x2)|0〉 (1)

and thus

〈x1, x2| =
1√
2!
〈0|ψ̂(x2)ψ̂(x1). (2)

Furthermore,
| . . . , 1µ, . . . , 1ν , . . .〉 = ĉ†µĉ

†
ν |0〉. (3)

Here we used that µ comes before ν in the ordering of single-particle states (because µ is
to the left of ν in the list of occupation numbers on the lhs), and so by our convention
introduced in the lectures, ĉ†ν should act on the vacuum before ĉ†µ does. Thus we consider

〈x1, x2| . . . , 1µ, . . . , 1ν , . . .〉 =
1√
2!
〈0|ψ̂(x2)ψ̂(x1)ĉ

†
µĉ
†
ν |0〉

=
1√
2

∑
α,β

φα(x2)φβ(x1)〈0|ĉαĉβ ĉ†µĉ†ν |0〉 (4)

where we used ψ̂(x) =
∑

α φα(x)ĉα. We calculate the matrix element in (4) by using the
anti-commutation relations to move the annihilation operators to the right until they are
next to |0〉 and then we use ĉ|0〉 = 0 (also, by taking the adjoint of this relation one sees
that creation operators standing next to 〈0| annihilate it: 〈0|ĉ† = 0). This gives

〈0|ĉα ĉβ ĉ
†
µ︸︷︷︸

δβµ−ĉ†µĉβ

ĉ†ν |0〉 = δβµ〈0| ĉαĉ
†
ν︸︷︷︸

δαν−ĉ†ν ĉα

|0〉 − 〈0|ĉαĉ†µ ĉβ ĉ
†
ν︸︷︷︸

δβν−ĉ†ν ĉβ

|0〉

= δβµδαν 〈0|0〉︸︷︷︸
1

−δβµ 〈0|ĉ†ν︸︷︷︸
0

ĉα|0〉︸ ︷︷ ︸
0

−δβν〈0| ĉαĉ
†
µ︸︷︷︸

δαµ−ĉ†µĉα

|0〉+ 〈0|ĉαĉ†µĉ†ν ĉβ|0〉︸︷︷︸
0

= δβµδαν − δβνδαµ〈0|0〉+ δβν 〈0|ĉ†µ︸︷︷︸
0

ĉα|0〉︸ ︷︷ ︸
0

= δβµδαν − δβνδαµ. (5)

Thus

〈x1, x2| . . . , 1i, . . . , 1j, . . .〉 =
1√
2

∑
α,β

φα(x2)φβ(x1)(δβµδαν − δβνδαµ)

=
1√
2

(φν(x2)φµ(x1)− φµ(x2)φν(x1))

=
1√
2!

∣∣∣∣ φµ(x1) φµ(x2)
φν(x1) φν(x2)

∣∣∣∣ . QED. (6)
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2. Density operators.

(a) The density operator ρ̂(x) is a single-particle operator. Expressed in terms of an arbitrary
single-particle basis {|α〉}), its second-quantized representation thus reads

ρ̂(x) =
∑
αβ

(∫
dx′ φ∗α(x′)δ(x− x′)φβ(x′)

)
ĉ†αĉβ (7)

=
∑
α,β

φ∗α(x)φβ(x) ĉ†αĉβ. (8)

Note that we used x′ as an integration variable in the integral in the matrix element here
(the expression enclosed in the parentheses), since x was already “taken” as ρ̂(x) depends
on x as a parameter. [Alternatively, if you want to start from the more basic expression
〈α|ĥ|β〉 for the matrix element, we have here ĥ = δ(x̂ − x) where the operator x̂ and the
parameter x should not be confused with each other. This gives, upon inserting two copies
of the identity operator resolved as I =

∫
dx′|x′〉〈x′| and using f(x̂)|x′〉 = f(x′)|x′〉, that

〈α|δ(x̂− x)|β〉 =

∫
dx′
∫
dx′′〈α|x′〉〈x′|δ(x̂− x)|x′′〉〈x′′|β〉

=

∫
dx′
∫
dx′′〈α|x′〉δ(x′′ − x) 〈x′|x′′〉︸ ︷︷ ︸

δ(x′−x′′)

〈x′′|β〉

=

∫
dx′ φ∗α(x′)δ(x′ − x)φβ(x′), (9)

which is identical to the integral in (7).] Using ψ̂(x) =
∑

α φα(x)ĉα and its adjoint, we see
that the above expression for ρ̂(x) can be written as

ρ̂(x) = ψ̂†(x)ψ̂(x). (10)

Alternatively, we could have used the position-spin basis directly to write

ρ̂(x) =

∫
dx′ ψ̂†(x′)δ(x− x′)ψ̂(x′) = ψ̂†(x)ψ̂(x). (11)

(b) Using Eq. (8) we get∫
dx ρ̂(x) =

∑
α,β

ĉ†αĉβ

∫
dx φ∗α(x)φβ(x)︸ ︷︷ ︸

δαβ

=
∑
α

ĉ†αĉα =
∑
α

n̂α = N̂ . (12)

Note that the basis {|α} used here is arbitrary, i.e. N̂ takes the same form regardless of
which basis one uses to express it. If the basis states are not countable and therefore must
be labeled by a continuous variable, the sum over α is replaced by an integral, and n̂α then
becomes a density operator. This is an alternative way of seeing that

N̂ =

∫
dx ρ̂(x) =

∫
dx ψ̂†(x)ψ̂(x). (13)

2



3. Proof of the second-quantized representation of two-particle operators.

(a) Let us start from the expression

1

2

[∫
dx

∫
dx′v(x, x′)ρ̂(x)ρ̂(x′)−

∫
dx v(x, x)ρ̂(x)

]
. (14)

Insert ρ̂(x) =
∑

i δ(x− xi) to get

1

2

[∫
dx

∫
dx′ v(x, x′)

∑
i

δ(x− xi)
∑
j

δ(x′ − xj)−
∫
dx v(x, x)

∑
i

δ(x− xi)

]

=
1

2

[∑
i

∑
j

v(xi, xj)−
∑
i

v(xi, xi)

]
=

1

2

∑
i,j

i 6=j

v(xi, xj) = ĤI . (15)

(b) In second quantization we have ρ̂(x) = ψ̂†(x)ψ̂(x). This gives

ĤI =
1

2

[∫
dx

∫
dx′ v(x, x′)ρ̂(x)ρ̂(x′)−

∫
dx v(x, x)ρ̂(x)

]

=
1

2

∫ dx

∫
dx′ v(x, x′)ψ̂†(x) ψ̂(x)ψ̂†(x′)︸ ︷︷ ︸

rewrite

ψ̂(x′)−
∫
dx v(x, x)ψ̂†(x)ψ̂(x)

 (16)

Now we use that
[ψ̂(x), ψ̂†(x′)]ζ = δ(x− x′) (17)

where ζ = ±1 for fermionic/bosonic field operators. Therefore

ψ̂(x)ψ̂†(x′) = −ζψ̂†(x′)ψ̂(x) + δ(x− x′). (18)

We insert this for the product labeled “rewrite” in (16) and do the x′ integration in the term
with the Dirac delta function. This gives

ĤI =
1

2

[
−ζ

∫
dx

∫
dx′ v(x, x′)ψ̂†(x)ψ̂†(x′)ψ̂(x)ψ̂(x′)

+

∫
dx v(x, x)ψ̂†(x)ψ̂(x)−

∫
dx v(x, x)ψ̂†(x)ψ̂(x)︸ ︷︷ ︸

0


= −1

2
ζ

∫
dx

∫
dx′ v(x, x′)ψ̂†(x)ψ̂†(x′) ψ̂(x)ψ̂(x′)︸ ︷︷ ︸

−ζψ̂(x′)ψ̂(x)

=
1

2

∫
dx

∫
dx′ v(x, x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x) (19)
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where we used (−ζ)2 = 1.

(c) Starting from the previous expression and using ψ̂(x) =
∑

α φα(x)ĉα and its adjoint gives

ĤI =
1

2

∑
α,β,γ,δ

∫
dx

∫
dx′ v(x, x′)φ∗α(x)φ∗β(x′)v(x, x′)φδ(x

′)φγ(x) ĉ†αĉ
†
β ĉδ ĉγ. (20)
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