TFY4210, Quantum theory of many-particle systems, 2016:
Tutorial 2

1. Explicit connection between first and second quantization.

An explicit connection between the basis states |[n) = |nj,ng,...) with > n, = N in
second quantization and the basis wavefunctions ®,,(xy, ..., xy) in first quantization can be
established. Let |
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Then the (correctly normalized) basis wavefunctions are given by
D, (r1,...,xn5) = {(T1,...,2TN]|N). (2)

As an example, consider a fermionic 2-particle basis state |...,1,,...,1,,...) in which the
single-particle states p and v are occupied and all others are empty. Evaluate the rhs of (2)
to show that the wavefunction is indeed the correct Slater determinant,
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2. Density operators.

The density operator j(z) is in first quantization given by p(z) = SN, 6(z — ;).

(a) Show that in second quantization,

(b) Using second quantization, show that
[ e o) = & (5)

where N is the total number operator.



2. Proof of the second-quantized representation of two-particle operators.

In first quantization a two-particle operator H; takes the form
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(a) Show that this can be rewritten (with p(z) given by its first-quantization expression)
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(b) Show that in second quantization H; can be written (for both fermionic and bosonic
systems)
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(c) Use this to show that the second-quantized representation of H;, expressed using the
arbitrary basis {|a)} for single-particle states, is given by
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which is exactly of the form claimed in the lectures (the expression enclosed in parentheses
is the matrix element denoted (af|v|vd) in the lectures).



