
TFY4210, Quantum theory of many-particle systems, 2013:
Tutorial 4

1. Band dispersion and hopping matrix element in the “tight-binding” description.

In the tight-binding description one considers a crystal composed of weakly coupled atoms.
Consider the problem of an electron in a crystal subject to the periodic potential U(r) given
by the sum of the potential energy from all atoms. The Schrödinger equation is{

− ~2

2m
∇2 + U(r)

}
φk(r) = ε(k)φk(r) (1)

where k is in the 1st Brillouin zone. Here

U(r) =
∑
R

Uatom(r −R) (2)

where Uatom(r) is the potential energy due to the atom centered at the lattice site located
at position R. Define

Ha = − ~2

2m
∇2 + Uatom(r) (3)

which is the Hamiltonian for an electron that only feels the potential due to an atom located
at the origin R = 0. Let χn(r) and εn be the associated electronic eigenfunctions and energy
levels for this atom, i.e. Haχn(r) = εnχn(r). Furthermore, define ∆U =

∑
R 6=0 Uatom(r−R).

Then (1) can be written
(Ha + ∆U)φk(r) = ε(k)φk(r). (4)

(a) By multiplying (4) with χ∗n(r) from the left and integrating over r, derive the following
set of equations for ε(k):

[ε(k)− εn]

∫
d3r χ∗n(r)φk(r) =

∫
d3r χ∗n(r)∆Uφk(r). (5)

(b) We write φk(r) as

φk(r) =
∑
R

eik·Rg(r −R). (6)

Show that this form satisfies Bloch’s theorem, i.e. φk(r) = eik·ruk(r) where uk(r) is periodic
in the lattice, i.e. u(r + R) = u(r) for an arbitrary lattice vector R.

(c) The unknown function g(r) can be expanded in the set of electronic eigenfunctions χn
for the single-atom problem:

g(r) =
∑
n

cnχn(r). (7)

In the lectures we showed that in the atomic limit, i.e. when the atoms in the crystal are
so far apart that they are effectively decoupled from each other, only one term in the sum
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contributes to each solution, i.e. the solution labeled by n takes the form cn = 1, cm = 0 for
m 6= n (this is for nondegenerate atomic energy levels, which we assume here for simplicity).
By using this an an approximation for the solution in the weakly coupled case, show that
the expression for the energy dispersion εn(k) for the nth energy band becomes

εn(k) = εn +

∑
R e

ik·R ∫ d3r χ∗n(r)∆Uχn(r −R)∑
R e

ik·R
∫
d3r χ∗n(r)χn(r −R)

. (8)

In the following we will assume that the overlap between the functions χn centered on
different atoms is so small that the sum in the denominator in (8) is well approximated by
the term R = 0 only, which gives

εn(k) = εn +
∑
R

eik·R
∫
d3r χ∗n(r)∆Uχn(r −R). (9)

(d) The tight-binding representation of the Hamiltonian for a system of electrons in a crystal
was derived in the lectures to be

H0 =
∑
n

∑
R,R′

∑
σ

tn,RR′c†nRσcnR′σ (10)

where the hopping matrix element tn,RR′ is given by

tn,RR′ =
1

N

∑
k

eik·(R−R′)εn(k). (11)

Use Eq. (9) to calculate the rhs of this expression.

2. A tight-binding model for electrons in a one-dimensional crystal.

Consider a tight-binding model of noninteracting electrons in a one-dimensional crystal with
Hamiltonian given by

Ĥ = −t
∑
j,σ

(ĉ†j,σ ĉj+1,σ + h.c.) + t′
∑
j,σ

(ĉ†j,σ ĉj+2,σ + h.c.). (12)

Here the sum over j goes over the N sites of the system and periodic boundary conditions
are imposed as usual. The first term on the rhs is the same as considered in the lectures.
It describes hopping between nearest-neighbour sites in the one-dimensional lattice. The
second term on the rhs describes hopping between next-nearest-neighbour sites. These two
types of processes have amplitudes −t and t′, respectively.

(a) Show that Ĥ can be written on diagonal form as

Ĥ =
∑
k,σ

εkĉ
†
kσ ĉkσ (13)

where the wavevector sum is over the 1st Brillouin zone [−π, π〉 and

εk = −2t cos k + 2t′ cos 2k (14)
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(note that here we have for simplicity set the lattice constant a to 1, so the wavevectors
become dimensionless).

In the remainder of the problem we take t to be a positive constant and we assume that the
system is half-filled, i.e. the number of electrons Ne equals the number of sites N . We will
consider the ground state of the Hamiltonian for different nonnegative values of t′. The no-
tion of Fermi points will be used, so recall that a Fermi point of a one-dimensional system
is a wavevector that separates a region of occupied wavevectors from a region of unoccupied
wavevectors in the ground state of the system.

(b) Plot εk for t′ = 0. What are the values of the Fermi points and occupied wavevectors in
this case?

(c) Next consider t′ to be positive and define the ratio r = t′/t (> 0). Show that there is a
critical value rc such that for r < rc the system has two Fermi points while for r > rc the
system has four Fermi points. Derive the value of rc.

(d) Plot εk for r = 0.4. What are the values of the Fermi points and occupied wavevectors
in this case?

(e) Plot εk for r = 1. What are the values of the Fermi points and occupied wavevectors in
this case?
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