
TFY4210, Quantum theory of many-particle systems, 2014:
Tutorial 4

1. Band dispersion and hopping matrix element in the “tight-binding” description.

In the tight-binding description one considers a crystal composed of weakly coupled atoms.
Consider the problem of an electron in a crystal subject to the periodic potential u(r) given
by the sum of the potential energy from all atoms. The Schrödinger equation is{

− ~2

2m
∇2 + u(r)

}
φk(r) = ε(k)φk(r) (1)

where k is in the 1st Brillouin zone. Here

u(r) =
∑
R

uatom(r −R) (2)

where uatom(r) is the potential energy due to the atom centered at the lattice site located
at position R. Define

ha(r) = − ~2

2m
∇2 + uatom(r) (3)

which is the Hamiltonian for an electron that only feels the potential due to an atom located
at the origin R = 0. Let χn(r) and εn be the associated electronic eigenfunctions and energy
levels for this atom, i.e. ha(r)χn(r) = εnχn(r). Furthermore, define

∆u(r) =
∑
R 6=0

uatom(r −R). (4)

Then (1) can be written

(ha(r) + ∆u(r))φk(r) = ε(k)φk(r). (5)

(a) By multiplying (5) with χ∗n(r) from the left and integrating over r, derive the following
set of equations for ε(k):

[ε(k)− εn]

∫
d3r χ∗n(r)φk(r) =

∫
d3r χ∗n(r)∆u(r) φk(r). (6)

(b) We write φk(r) as

φk(r) =
∑
R

eik·Rg(r −R). (7)

Show that this form satisfies Bloch’s theorem, i.e. φk(r) = eik·rvk(r) where vk(r) is periodic
in the lattice, i.e. v(r + R) = v(r) for an arbitrary lattice vector R.
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(c) The unknown function g(r) can be expanded in the set of electronic eigenfunctions χn
for the single-atom problem:

g(r) =
∑
n

cnχn(r). (8)

In the lectures we demonstrated that in the atomic limit, i.e. when the atoms in the crystal
are so far apart that they are effectively decoupled from each other, only one term in the sum
contributes to each solution, i.e. the solution labeled by n takes the form cn = 1, cm = 0 for
m 6= n (this is for nondegenerate atomic energy levels, which we assume here for simplicity).
By using this an an approximation for the solution in the weakly coupled case, show that
the expression for the energy dispersion εn(k) for the nth energy band becomes

εn(k) = εn +

∑
R e

ik·R ∫ d3r χ∗n(r)∆u(r) χn(r −R)∑
R e

ik·R
∫
d3r χ∗n(r)χn(r −R)

. (9)

In the following we will assume that the overlap between the functions χn centered on
different atoms is so small that the sum in the denominator in (9) is well approximated by
the term R = 0 only, which gives

εn(k) = εn +
∑
R

eik·R
∫
d3r χ∗n(r)∆u(r)χn(r −R). (10)

(d) The tight-binding representation of the Hamiltonian for a system of electrons in a crystal
was derived in the lectures to be

H0 =
∑
n

∑
R,R′

∑
σ

tn,RR′c†nRσcnR′σ (11)

where the hopping matrix element tn,RR′ is given by

tn,RR′ =
1

N

∑
k

eik·(R−R
′)εn(k). (12)

Use Eq. (10) to calculate the rhs of this expression.

2. Electrons on a square lattice.

Consider the following Hamiltonian describing electrons hopping between nearest-neighbour
sites on a two-dimensional square lattice:

H = −t
∑
〈i,j〉

∑
σ

(c†j,σci,σ + h.c.). (13)

Here t > 0 is the hopping amplitude, i and j are labels for the sites of the square lattice,
and σ = ±1/2 labels the electron spin projection. The leftmost sum is over all pairs of
nearest-neighbour sites (each such pair being counted once).
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(a) Show that the Hamiltonian can be written on the diagonalized form

H =
∑
k,σ

εkc
†
k,σck,σ, (14)

where the sum over k runs over the 1st Brillouin zone of the square lattice. Give the disper-
sion relation εk.

(b) Consider the density parameter n = Ne/N , where Ne is the number of electrons in the
system and N is the number of sites. Show that in the ground state of the system (for a
given number Ne of electrons), n is proportional to the k-space area enclosed by the Fermi
surface and find the proportionality constant.

(c) Sketch the Fermi surface for (i) n� 1, (ii) n = 1, and (iii) n = 2.
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