
TFY4210, Quantum theory of many-particle systems, 2016:
Solution to tutorial 6

1. The Holstein-Primakoff representation.

(a) With
S± ≡ Sx ± iSy (1)

we get1

[S+, S−] = [Sx + iSy, Sx − iSy] = −2i[Sx, Sy] = −2i · iSz = 2Sz, (2)

[Sz, S±] = [Sz, Sx]± i[Sz, Sy] = iSy ± i(−i)Sx = ±(Sx ± iSy) = ±S±. (3)

(b) We have
[S+, S−] =

√
2S − n̂aa†

√
2S − n̂︸ ︷︷ ︸

(i)

− a†
√

2S − n̂
√

2S − n̂a︸ ︷︷ ︸
(ii)

. (4)

To simplify (i) and (ii) we use [a, a†] = 1, [n̂, a] = −a, and the fact that [f(n̂), g(n̂)] = 0.
This gives

(i) =
√

2S − n̂(1 + n̂)
√

2S − n̂ = (2S − n̂)(1 + n̂) = 2S + 2Sn̂− n̂− n̂2, (5)

(ii) = a†(2S − n̂)a = 2Sn̂− a†n̂a = 2Sn̂− a†(an̂− a) = 2Sn̂− n̂2 + n̂. (6)

Thus
[S+, S−] = (i) - (ii) = 2S − 2n̂ = 2Sz. QED. (7)

Furthermore,
[Sz, S+] = (S − n̂)

√
2S − n̂a−

√
2S − n̂a(S − n̂) (8)

In the second term we rewrite as follows: a(S− n̂) = Sa− an̂ = Sa− a− n̂a = (S− n̂)a− a.
This gives

[Sz, S+] =
√

2S − n̂a = S+. QED. (9)

Also, since the HP representations of S+ and S− are adjoints of each other it follows from
the footnote that [Sz, S−] = −S− is reproduced as well. Finally,

S · S = SxSx + SySy + SzSz =
1

2
(S+S− + S−S+) + SzSz

=
1

2

[√
2S − n̂aa†

√
2S − n̂ + a†

√
2S − n̂

√
2S − n̂a

]
+ (S − n̂)(S − n̂)

=
1

2

[
(2S − n̂)(1 + n̂) + a†(2S − n̂)a

]
+ (S − n̂)(S − n̂)

=
1

2

[
2S + 2Sn̂− n̂− n̂2 + 2Sn̂− n̂2 + n̂

]
+ S2 − 2Sn̂ + n̂2

= S + S2 = S(S + 1). QED. (10)

1Note that
[Sz, S−] = SzS− − S−Sz = (S+Sz − SzS+)† = −[Sz, S+]†,

where we used that S+ and S− are adjoint operators of each other, Sz is hermitian, and (AB)† = B†A†.
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2. Ferromagnetic Heisenberg model with a spin anisotropy.

The Hamiltonian H can be written

H = HHeis + HD (11)

where HHeis is the Hamiltonian of the Heisenberg model that we have discussed in the lectures
and

HD = −D
∑
i

(Szi )2. (12)

(a) Since J < 0, HHeis is a ferromagnetic Heisenberg model. It wants a ground state in which
the spins order ferromagnetically along some arbitrary direction. On the other hand, with
D > 0, HD wants a ground state in which the absolute value of the z-component of each
spin is maximized, i.e. it wants each spin to be in an eigenstate with eigenvalue Szi = +S
or Szi = −S (the sign of the eigenvalue may vary between lattice sites). While most ground
states of HHeis are not ground states of HD and vice versa, it is possible to find some ground
states that are, and which therefore are ground states of H too: those states which have
ferromagnetic order in the +z direction or in the −z direction. QED.

(b) The Heisenberg Hamiltonian can be written as

HHeis = J
∑
i,δ

[
1

2
(S+

i S
−
i+δ + S−i S

+
i+δ) + Szi S

z
i+δ

]
. (13)

Let us assume ordering along the +z direction. Using the Holstein-Primakoff expansion,
expanding the square roots, and only keeping terms in HHeis of order S2 and S, gives

HHeis = J
∑
i,δ

1

2
(
√

2S)2(aia
†
i+δ + a†iai+δ + (S − ni)(S − ni+δ)︸ ︷︷ ︸

neglect nini+δ = O(S0)


= J

∑
i,δ

[S(a†i+δai + a†iai+δ) + S2 − S(ni + ni+δ)]. (14)

Note that ∑
i,δ

1 =
∑
i

·
∑
δ

1 = N · (z/2) (15)

where z is the coordination number of the lattice (i.e. the number of nearest neighbours;
z = 2d for a d-dimensional hypercubic lattice). Also, since J < 0 we write J = −|J |. Thus

HHeis = −|J |NS2z/2− |J |S
∑
i,δ

[a†i+δai + a†iai+δ − a†iai − ai+δai+δ]. (16)

This can be simplified a little further by noting that∑
i

a†i+δai+δ
i′≡i+δ

=
∑
i′

a†i′ai′ =
∑
i

a†iai (17)
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and so

HHeis = −|J |NS2z/2− |J |S
∑
i,δ

[a†i+δai + a†iai+δ − 2a†iai]. (18)

Now we do a Fourier transformation:

ai =
1√
N

∑
k

eik·riak (19)

where the k-sum goes over the 1st Brillouin zone. This gives (using ri+δ = ri + δ in the 2nd
line) ∑

i

(a†i+δai + a†iai+δ) =
∑
i

(a†i+δai + h.c.)

=
∑
i

1

N

∑
k,k′

e−ik·(ri+δ)eik
′·ria†kak′ + h.c.)

=
∑
k,k′

a†kak′e
−ik·δ 1

N

∑
i

e−i(k−k
′)·ri

︸ ︷︷ ︸
δk,k′

+h.c.

=
∑
k

a†kake
−ik·δ + h.c. =

∑
k

a†kak(e−ik·δ + eik·δ)

=
∑
k

a†kak · 2 cos(k · δ). (20)

Similarly, ∑
i

a†iai =
∑
i

1

N

∑
k,k′

e−ik·rieik
′·ria†kak′

=
∑
k,k′

a†kak′
1

N

∑
i

e−i(k−k
′)·ri)

︸ ︷︷ ︸
δk,k′

=
∑
k

a†kak. (21)

This gives

HHeis = −|J |NS2z/2 +
∑
k

[
2|J |S

∑
δ

(1− cos(k · δ))

]
a†kak. (22)

Next we consider HD. We have

(Szi )2 = (S − ni)
2 = S2 − 2Sa†iai + O(S0), (23)
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and thus

HD = −D
∑
i

(Szi )2 = −DNS2 + 2DS
∑
i

a†iai = −DNS2 + 2DS
∑
k

a†kak. (24)

So the total Hamiltonian becomes

H = −NS2(|J |z/2 + D) +
∑
k

2S

{
|J |
∑
δ

(1− cos(k · δ)) + D

}
a†kak (25)

Since the quantity in curly brackets is > 0, magnons (created by the operators a†k) cost a
finite positive energy. Thus the ground state (eigenstate with lowest energy) has no magnons.
Therefore only the first term contributes to the ground state energy E0. Thus

E0 = −NS2(|J |z/2 + D), (26)

ωk = 2S

{
D + |J |

∑
δ

(1− cos(k · δ))

}
. (27)

(c) The lowest excited state will have one magnon, whose wavevector k minimizes ωk. It is
easy to see that the minimum of ωk occurs for k = 0, with ωk=0 = 2SD. Thus E1 = E0+2SD,
giving

∆ = E1 − E0 = 2SD. (28)

(d) If D < 0, HD wants a ground state with Szi = 0. This can be reconciled with the
ferromagnetic ordering that HHeis wants by ordering the spins in the xy plane. Thus we can
predict that the spins will order ferromagnetically along some direction lying in the xy plane.

******

Some final remarks about Problem 2: Since we have used spin-wave theory to analyze the
problem, neglecting terms of order S0 or higher in the 1/S expansion, we expect as usual
for this approach that the analysis is most accurate for large values of S. For the particular
value S = 1/2 (i.e. the smallest possible nonzero value of S, and thus also the value of S
for which one would naively expect a spin-wave analysis to be least reliable) one can see
that the analysis given here is not valid, since in that case the anisotropy term HD is just
a constant2 and thus the magnon dispersion ωk should be the same as for D = 0. But for
general values of S, HD is not a constant.

2For S = 1/2, the only possible eigenvalues of Sz
i are ±1/2, and thus (Sz

i )2|Φ〉 = (1/4)|Φ〉 for any state
|Φ〉.
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