TFY4210, Quantum theory of many-particle systems, 2016: Solution to tutorial 6

1. The Holstein-Primakoff representation.

(a) With

$$S^{\pm} \equiv S^x \pm i S^y \tag{1}$$

we get^1

$$[S^+, S^-] = [S^x + iS^y, S^x - iS^y] = -2i[S^x, S^y] = -2i \cdot iS^z = 2S^z,$$
(2)

$$[S^{z}, S^{\pm}] = [S^{z}, S^{x}] \pm i[S^{z}, S^{y}] = iS^{y} \pm i(-i)S^{x} = \pm(S^{x} \pm iS^{y}) = \pm S^{\pm}.$$
 (3)

(b) We have

$$[S^+, S^-] = \underbrace{\sqrt{2S - \hat{n}} a a^{\dagger} \sqrt{2S - \hat{n}}}_{(i)} - \underbrace{a^{\dagger} \sqrt{2S - \hat{n}} \sqrt{2S - \hat{n}} a}_{(ii)}.$$
 (4)

To simplify (i) and (ii) we use $[a, a^{\dagger}] = 1$, $[\hat{n}, a] = -a$, and the fact that $[f(\hat{n}), g(\hat{n})] = 0$. This gives

(i) =
$$\sqrt{2S - \hat{n}(1 + \hat{n})}\sqrt{2S - \hat{n}} = (2S - \hat{n})(1 + \hat{n}) = 2S + 2S\hat{n} - \hat{n} - \hat{n}^2,$$
 (5)

(ii) =
$$a^{\dagger}(2S - \hat{n})a = 2S\hat{n} - a^{\dagger}\hat{n}a = 2S\hat{n} - a^{\dagger}(a\hat{n} - a) = 2S\hat{n} - \hat{n}^2 + \hat{n}.$$
 (6)

Thus

$$[S^+, S^-] = (i) - (ii) = 2S - 2\hat{n} = 2S^z$$
. QED. (7)

Furthermore,

$$[S^{z}, S^{+}] = (S - \hat{n})\sqrt{2S - \hat{n}a} - \sqrt{2S - \hat{n}a}(S - \hat{n})$$
(8)

In the second term we rewrite as follows: $a(S - \hat{n}) = Sa - a\hat{n} = Sa - a - \hat{n}a = (S - \hat{n})a - a$. This gives

$$[S^z, S^+] = \sqrt{2S - \hat{n}a} = S^+.$$
 QED. (9)

Also, since the HP representations of S^+ and S^- are adjoints of each other it follows from the footnote that $[S^z, S^-] = -S^-$ is reproduced as well. Finally,

$$\begin{aligned} \boldsymbol{S} \cdot \boldsymbol{S} &= S^{x}S^{x} + S^{y}S^{y} + S^{z}S^{z} = \frac{1}{2}(S^{+}S^{-} + S^{-}S^{+}) + S^{z}S^{z} \\ &= \frac{1}{2}\left[\sqrt{2S - \hat{n}}aa^{\dagger}\sqrt{2S - \hat{n}} + a^{\dagger}\sqrt{2S - \hat{n}}\sqrt{2S - \hat{n}}a\right] + (S - \hat{n})(S - \hat{n}) \\ &= \frac{1}{2}\left[(2S - \hat{n})(1 + \hat{n}) + a^{\dagger}(2S - \hat{n})a\right] + (S - \hat{n})(S - \hat{n}) \\ &= \frac{1}{2}\left[2S + 2S\hat{n} - \hat{n} - \hat{n}^{2} + 2S\hat{n} - \hat{n}^{2} + \hat{n}\right] + S^{2} - 2S\hat{n} + \hat{n}^{2} \\ &= S + S^{2} = S(S + 1). \quad \text{QED}. \end{aligned}$$
(10)

¹Note that

$$[S^{z}, S^{-}] = S^{z}S^{-} - S^{-}S^{z} = (S^{+}S^{z} - S^{z}S^{+})^{\dagger} = -[S^{z}, S^{+}]^{\dagger}$$

where we used that S^+ and S^- are adjoint operators of each other, S^z is hermitian, and $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.

2. Ferromagnetic Heisenberg model with a spin anisotropy.

The Hamiltonian H can be written

$$H = H_{\text{Heis}} + H_D \tag{11}$$

where H_{Heis} is the Hamiltonian of the Heisenberg model that we have discussed in the lectures and

$$H_D = -D\sum_{i} (S_i^z)^2.$$
 (12)

(a) Since J < 0, H_{Heis} is a ferromagnetic Heisenberg model. It wants a ground state in which the spins order ferromagnetically along some arbitrary direction. On the other hand, with D > 0, H_D wants a ground state in which the absolute value of the z-component of each spin is maximized, i.e. it wants each spin to be in an eigenstate with eigenvalue $S_i^z = +S$ or $S_i^z = -S$ (the sign of the eigenvalue may vary between lattice sites). While most ground states of H_{Heis} are not ground states of H_D and vice versa, it is possible to find some ground states that are, and which therefore are ground states of H too: those states which have ferromagnetic order in the +z direction or in the -z direction. QED.

(b) The Heisenberg Hamiltonian can be written as

$$H_{\text{Heis}} = J \sum_{i,\delta} \left[\frac{1}{2} (S_i^+ S_{i+\delta}^- + S_i^- S_{i+\delta}^+) + S_i^z S_{i+\delta}^z \right].$$
(13)

Let us assume ordering along the +z direction. Using the Holstein-Primakoff expansion, expanding the square roots, and only keeping terms in H_{Heis} of order S^2 and S, gives

$$H_{\text{Heis}} = J \sum_{i,\delta} \left[\frac{1}{2} (\sqrt{2S})^2 (a_i a_{i+\delta}^{\dagger} + a_i^{\dagger} a_{i+\delta} + \underbrace{(S - n_i)(S - n_{i+\delta})}_{\text{neglect } n_i n_{i+\delta} = O(S^0)} \right]$$
$$= J \sum_{i,\delta} [S(a_{i+\delta}^{\dagger} a_i + a_i^{\dagger} a_{i+\delta}) + S^2 - S(n_i + n_{i+\delta})].$$
(14)

Note that

$$\sum_{i,\delta} 1 = \sum_{i} \cdot \sum_{\delta} 1 = N \cdot (z/2) \tag{15}$$

where z is the coordination number of the lattice (i.e. the number of nearest neighbours; z = 2d for a d-dimensional hypercubic lattice). Also, since J < 0 we write J = -|J|. Thus

$$H_{\text{Heis}} = -|J|NS^2 z/2 - |J|S \sum_{i,\boldsymbol{\delta}} [a_{i+\boldsymbol{\delta}}^{\dagger}a_i + a_i^{\dagger}a_{i+\boldsymbol{\delta}} - a_i^{\dagger}a_i - a_{i+\boldsymbol{\delta}}a_{i+\boldsymbol{\delta}}].$$
(16)

This can be simplified a little further by noting that

$$\sum_{i} a_{i+\delta}^{\dagger} a_{i+\delta} \stackrel{i' \equiv i+\delta}{=} \sum_{i'} a_{i'}^{\dagger} a_{i'} = \sum_{i} a_{i}^{\dagger} a_{i}$$
(17)

and so

$$H_{\text{Heis}} = -|J|NS^2 z/2 - |J|S \sum_{i,\boldsymbol{\delta}} [a_{i+\boldsymbol{\delta}}^{\dagger}a_i + a_i^{\dagger}a_{i+\boldsymbol{\delta}} - 2a_i^{\dagger}a_i].$$
(18)

Now we do a Fourier transformation:

$$a_i = \frac{1}{\sqrt{N}} \sum_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot\boldsymbol{r}_i} a_{\boldsymbol{k}} \tag{19}$$

where the k-sum goes over the 1st Brillouin zone. This gives (using $r_{i+\delta} = r_i + \delta$ in the 2nd line)

$$\sum_{i} (a_{i+\delta}^{\dagger} a_{i} + a_{i}^{\dagger} a_{i+\delta}) = \sum_{i} (a_{i+\delta}^{\dagger} a_{i} + \text{h.c.})$$

$$= \sum_{i} \frac{1}{N} \sum_{\mathbf{k},\mathbf{k}'} e^{-i\mathbf{k}\cdot(\mathbf{r}_{i}+\delta)} e^{i\mathbf{k}'\cdot\mathbf{r}_{i}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}'} + \text{h.c.})$$

$$= \sum_{\mathbf{k},\mathbf{k}'} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}'} e^{-i\mathbf{k}\cdot\delta} \underbrace{\frac{1}{N} \sum_{i} e^{-i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{r}_{i}}}_{\delta_{\mathbf{k},\mathbf{k}'}} + \text{h.c.}$$

$$= \sum_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} e^{-i\mathbf{k}\cdot\delta} + \text{h.c.} = \sum_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} (e^{-i\mathbf{k}\cdot\delta} + e^{i\mathbf{k}\cdot\delta})$$

$$= \sum_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} \cdot 2\cos(\mathbf{k}\cdot\delta). \tag{20}$$

Similarly,

$$\sum_{i} a_{i}^{\dagger} a_{i} = \sum_{i} \frac{1}{N} \sum_{\mathbf{k}, \mathbf{k}'} e^{-i\mathbf{k}\cdot\mathbf{r}_{i}} e^{i\mathbf{k}'\cdot\mathbf{r}_{i}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}'}$$

$$= \sum_{\mathbf{k}, \mathbf{k}'} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}'} \underbrace{\frac{1}{N} \sum_{i} e^{-i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{r}_{i}}}_{\delta_{\mathbf{k},\mathbf{k}'}}$$

$$= \sum_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}.$$
(21)

This gives

$$H_{\text{Heis}} = -|J|NS^2 z/2 + \sum_{\boldsymbol{k}} \left[2|J|S \sum_{\boldsymbol{\delta}} (1 - \cos(\boldsymbol{k} \cdot \boldsymbol{\delta})) \right] a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}.$$
(22)

Next we consider H_D . We have

$$(S_i^z)^2 = (S - n_i)^2 = S^2 - 2Sa_i^{\dagger}a_i + O(S^0),$$
(23)

and thus

$$H_D = -D\sum_i (S_i^z)^2 = -DNS^2 + 2DS\sum_i a_i^{\dagger} a_i = -DNS^2 + 2DS\sum_k a_k^{\dagger} a_k.$$
 (24)

So the total Hamiltonian becomes

$$H = -NS^{2}(|J|z/2 + D) + \sum_{\boldsymbol{k}} 2S \left\{ |J| \sum_{\boldsymbol{\delta}} (1 - \cos(\boldsymbol{k} \cdot \boldsymbol{\delta})) + D \right\} a_{\boldsymbol{k}}^{\dagger} a_{\boldsymbol{k}}$$
(25)

Since the quantity in curly brackets is > 0, magnons (created by the operators $a_{\mathbf{k}}^{\dagger}$) cost a finite positive energy. Thus the ground state (eigenstate with lowest energy) has no magnons. Therefore only the first term contributes to the ground state energy E_0 . Thus

$$E_0 = -NS^2(|J|z/2 + D), (26)$$

$$\omega_{\boldsymbol{k}} = 2S \left\{ D + |J| \sum_{\boldsymbol{\delta}} (1 - \cos(\boldsymbol{k} \cdot \boldsymbol{\delta})) \right\}.$$
(27)

(c) The lowest excited state will have one magnon, whose wavevector \boldsymbol{k} minimizes $\omega_{\boldsymbol{k}}$. It is easy to see that the minimum of $\omega_{\boldsymbol{k}}$ occurs for $\boldsymbol{k} = 0$, with $\omega_{\boldsymbol{k}=0} = 2SD$. Thus $E_1 = E_0 + 2SD$, giving

$$\Delta = E_1 - E_0 = 2SD. \tag{28}$$

(d) If D < 0, H_D wants a ground state with $S_i^z = 0$. This can be reconciled with the ferromagnetic ordering that H_{Heis} wants by ordering the spins in the xy plane. Thus we can predict that the spins will order ferromagnetically along some direction lying in the xy plane.

Some final remarks about Problem 2: Since we have used spin-wave theory to analyze the problem, neglecting terms of order S^0 or higher in the 1/S expansion, we expect as usual for this approach that the analysis is most accurate for large values of S. For the particular value S = 1/2 (i.e. the smallest possible nonzero value of S, and thus also the value of S for which one would naively expect a spin-wave analysis to be least reliable) one can see that the analysis given here is not valid, since in that case the anisotropy term H_D is just a constant² and thus the magnon dispersion ω_k should be the same as for D = 0. But for general values of S, H_D is not a constant.

²For S = 1/2, the only possible eigenvalues of S_i^z are $\pm 1/2$, and thus $(S_i^z)^2 |\Phi\rangle = (1/4) |\Phi\rangle$ for any state $|\Phi\rangle$.

3. Physical picture of ferromagnetic spin waves. $\overline{S_{1}}^{\perp} \cdot \overline{S_{1}}^{\perp} = S_{1}^{\times} \cdot S_{1}^{\times} + S_{1}^{\times} \cdot S_{1}^{\times}$ $= \frac{1}{2}(S_{1}^{+}S_{1}^{-} + S_{1}^{-}S_{1}^{+})$ We assume it in the following.

8 Using the HP representation we have $S_{i}^{+} = \sqrt{2S - N_{i}} a_{i} \approx \sqrt{2S} a_{i}$ to lowest $S_{i}^{-} = \sqrt{2S'} a_{i}^{+}$ the spin-wave expansion and similarly for Sj, Sj. $= \overline{S}_{i}^{\perp} \cdot \overline{S}_{j}^{\perp} = \frac{1}{2} (\sqrt{2}s)^{2} [a_{i}a_{j}^{\perp} + a_{i}^{\perp}a_{j}^{\perp}]$ $= S(a_{j}^{\dagger}a_{i}^{\dagger} + a_{i}^{\dagger}a_{j}) \quad (i \neq j)$ $= \frac{S}{N} \sum_{k_1} a_{k_1} a_{k_2}$ $\cdot \begin{bmatrix} -i\overline{k_1}\cdot\overline{r_j} & i\overline{k_2}\cdot\overline{r_i} & -i\overline{k_1}\cdot\overline{r_i} & i\overline{k_2}\cdot\overline{r_j} \end{bmatrix}$ where we used $a_{\overline{i}} = \frac{1}{N} \sum_{\overline{i}} e^{i\overline{h}\cdot\overline{r_i}} a_{\overline{i}}$ \Rightarrow < \vec{k} | \vec{s} : \vec{s} : \vec{k} > $= \frac{S}{N} \sum_{TT} \left[e^{i \overline{h_1} \cdot \overline{r_j}} e^{i \overline{h_2} \cdot \overline{r_i}} + e^{i \overline{h_1} \cdot \overline{r_i}} e^{i \overline{h_2} \cdot \overline{r_j}} \right]$ $\cdot < 0$ at at a at 10 $a_{\overline{k}_{1}}^{+} a_{\overline{k}_{1}}^{+} + \delta_{\overline{k}_{1}}^{+} a_{\overline{k}_{2}}^{+} + \delta_{\overline{k}}^{+} a_{\overline{k}}^{+} a_{\overline{k}_{2}}^{+} + \delta_{\overline{k}}^{+} a_{\overline{k}}^{+} a_{\overline{k}}^{+} a_{\overline{k}}^{+} + \delta_{\overline{k}}^{+} a_{\overline{k}}^{+} a_{\overline{k}}^{+} a_{\overline{k}}^{+} + \delta_{\overline{k}}^{+} a_{\overline{k}}^{+} a_{\overline{k}$

Since there are no magnous in the ferromagnetic ground state, we get zero if we my to annihilate a magnen in the ground state, i.e. at 107 = 0 for any h' =) < 0 at = 0 as well => < 01 an at an at 10> = Still, Still \Rightarrow < \vec{k} | \vec{s} : \vec{s} : \vec{k} > $= \frac{S}{N} \left[e^{-i\vec{k}\cdot(\vec{r_j}-\vec{r_i})} + e^{-i\vec{k}\cdot(\vec{r_i}-\vec{r_j})} \right]$ $= \frac{2S}{N} \cos k \cdot (\vec{r_i} - \vec{r_j})$ This shows that for average each spin has a small transverse component of magnetude $\sqrt{2S/N}$ and the orientzkow of the transverse components of two spins i and j differ by an angle $\overline{k} \cdot (\overline{r_i} - \overline{r_j})$.