TFY4210, Quantum theory of many-particle systems, 2016:
Solution to tutorial 8

1. The sublattice magnetization correction for the Heisenberg antiferromagnet
at nonzero temperature.

(a) We have
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where k = |k|. Here we used that d runs over the d orthogonal unit vectors in d dimensions
(e.g. in 3 dimensions, d runs over &, g, and 2). This gives, for small k,
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(b) Converting the k-sum to an integral and using that ny is given by the Bose-Einstein
distribution function, the temperature-dependent part of the sublattice magnetization cor-

rection can be written
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where MBZ denotes the magnetic Brillouin zone. Since we here want to look at the contri-
bution from the vicinity of £ = 0 we use the results in (a) and also (since wg, — 0 as k — 0)
ePr ~ 1 + Buwy, to get
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Also taking into account the factor k%! from the integration measure, the k-dependence of
the radial part of the k-integral then becomes proportional to kd*1§ = k%3 at small k.
Therefore the contribution from the lower limit & = 0 to the radial integral becomes
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for k — 0. (5)

Thus both in d = 1 and d = 2 there is a divergence coming from the lower integration limit.



(c) By putting d = 3 in the integral on the lhs of (6) one sees that there is no divergence
from the k£ = 0 limit in this case. To find the leading T-dependence of the finite-temperature
correction (T — 0) to the sublattice magnetization, we note that due to the factor e?* the
contributions to the integral will decrease very rapidly with k when g — oco. We therefore
approximate the integral by using the small-k approximations derived in (a) for all k and
also replacing the integral over the MBZ by an integral over all k. Thus (4) becomes
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where a change of integration variable led to the last expression in which the remaining

integral is a dimensionless number. The T2 temperature dependence is now evident from
the factor 372

(7)

2. 0th and 1st order perturbation theory for the interacting electron gas.

(a) We have
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Using n = k% /(372) (derived in the lectures) then gives
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In the lectures we also showed that E(®)/N = (3/5)ep, where the Fermi energy cp =
h%k%/(2m). Thus
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(b) From 1st order perturbation theory, E®") = (FS|H;|FS), where H; is the Coulomb
interaction term in H. Thus
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Let us consider the matrix element in this expression. The annihilation operators acting
on |FS) will give zero unless their wavevectors k and k' are occupied in |FS), giving the
requirement |k| < kp and |K'| < kp. To get a nonzero matrix element, the two creation
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Figure 1: Left: For a given q, the k-integral is the volume of the intersection of two spheres
of radius kr centered at k = 0 and k = —q respectively. Right: Blowup of the intersection.

operators must then bring the state back to |FS), which requires ¢ = 0 or k' = k + q,
o' =o0. But ¢ = 0 is excluded from the g-sum in H;. Therefore
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where we again used that ¢ # 0 when anticommuting the two middle operators. Inserting

this in (11) and doing the spin summations (which give a factor of 2) and the summation

over k' gives
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Converting the two sums to integrals (), — (2%)3 | dk) and using spherical coordinates
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Consider the k-integral (second line here) for a fixed q. The two step functions are equivalent
to the requirements |k| < kp and |k — (—q)| < kp. Thus the k-integral is the volume of
the intersection of two spheres of radius kr, one centered at k = 0 and the other centered
at k = —q (see Fig. 1). Although the latter sphere moves as the direction of g is changed,
the volume of the intersection of the two spheres is independent of the direction of g. Thus
the angular part of the g-integral can be done trivially, giving fozw do, f_ll d(cosb,) = 4m.
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Furthermore, one sees from the figure that a nonzero intersection requires the magnitude of
q to satisfy ¢ < 2kp. Taking these things into account gives
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where Vol(q) is the intersection volume, which by symmetry is twice the volume of the right
half of the intersection. To calculate this half-volume, we take the k. axis to point in the
direction of —q. Then the angle 6, is as shown in Fig. 1. For a given 6, k is integrated
from kpin t0 kpax. While kyayx = kr independently of 6, kn;, is given by (see Fig. 1):
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As 0y, is increased, ki, grows. The maximum value of 6, corresponds to ki, = Fnax, giving
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There are no constraints on the variable ¢, so the ¢g-integral just gives 27. Thus
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(As a check of the correctness of this result, note that for ¢ = 0 it becomes 47k /3 (i.e. the
volume of a sphere of radius k) and for ¢ = 2kr it becomes 0; both cases are as expected.)
Thus
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Using Q/N = 1/n and k3. = 3nn gives BV /N = —z—ow%kp. Expressing this in Rydberg
units, it can be rewritten as follows:
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3. Single-particle retarded Green function for noninteracting bosons.

Given the Hamiltonian for noninteracting bosons,

Hy = Zéuclcw (21)
we consider the single-particle retarded Green function
Gy (v,t) = —if(t)([cu (1), c}(0)]). (22)
Here . ‘ '
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where the last expression follows in exactly the same way as for the fermionic case discussed
in the lecture notes (Sec. 2.4). Thus
GE(v,t) = —if(t)e " [c,, cl]) = —if(t)e " (24)
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where we used the equal-time commutation relation [c,, /] = 1. The result (24) takes exactly
the same form as for fermions. It follows that the Fourier transform also takes exactly the

same form as for fermions: ]
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Note however that if we had wished to find the Green functions G~ or G<, the expressions
would have contained the expectation value (c/c,), which for noninteracting bosons is given
by the Bose-Einstein distribution function (e —1)~! and not the Fermi-Dirac distribution
function (e’ + 1)~! appearing in the fermionic case.

Géz(l/,w) = (25)

4. The basis invariance of the trace.

Let us consider two arbitrary basis sets, denoted {|a)} and {|&)}. Let us define Tr O as the
sum of the diagonal matrix elements of O in the basis {|a)}:

Tr O = Z(oz\0|oz>. (26)
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Using the resolution of the identity operator I in terms of the basis {|&@)}, i.e. I =) |a&)(a],
the two basis sets can be related as

= Z @) (@|a) = Z(&|a>|&>. (27)
Thus
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which shows that Tr O is also equal to the sum of the diagonal elements of O in the basis
{|@)}. As the basis sets used here are arbitrary we conclude that the sum of the diagonal
elements is independent of the basis.

In the above proof we expressed both the ket |a) and the bra («| in terms of the new basis,
thus using the resolution of the identity twice. Actually, a simpler proof can be given by
just using it once, e.g. for the ket only, as follows:

Tr 0 = 3" (al0la) = Y (al0la)(la) = Y (dla)al0la) = S (@lola).  (29)
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