
TFY4210, Quantum theory of many-particle systems, 2016:
Solution to tutorial 8

1. The sublattice magnetization correction for the Heisenberg antiferromagnet
at nonzero temperature.

(a) We have

γk =
2

z

∑
δ

cos(k · δ) =
1

d

∑
δ

cos(k · δ). (1)

Using cos x ≈ 1− x2/2 for x→ 0 we get, for small k,

γk ≈
1

d

∑
δ

[
1− 1

2
(k · δ)2

]
=

1

d

[
d− 1

2
k2

]
= 1− k2

2d
(2)

where k = |k|. Here we used that δ runs over the d orthogonal unit vectors in d dimensions
(e.g. in 3 dimensions, δ runs over x̂, ŷ, and ẑ). This gives, for small k,

ωk = JSz
√

1− γ2
k ≈ 2JSd

√
1−

(
1− k2

2d

)2

= 2JSd

√
k2

d
− k4

4d2
≈ 2JS

√
d k. (3)

(b) Converting the k-sum to an integral and using that nk is given by the Bose-Einstein
distribution function, the temperature-dependent part of the sublattice magnetization cor-
rection can be written

2

N

∑
k∈MBZ

nk
1√

1− γ2
k

∝
∫

MBZ

ddk
1

eβωk − 1

1√
1− γ2

k

(4)

where MBZ denotes the magnetic Brillouin zone. Since we here want to look at the contri-
bution from the vicinity of k = 0 we use the results in (a) and also (since ωk → 0 as k → 0)
eβωk ≈ 1 + βωk to get

1

eβωk − 1

1√
1− γ2

k

∝ 1

k2
for k → 0. (5)

Also taking into account the factor kd−1 from the integration measure, the k-dependence of
the radial part of the k-integral then becomes proportional to kd−1 1

k2
= kd−3 at small k.

Therefore the contribution from the lower limit k = 0 to the radial integral becomes∫
0

dk kd−3 =

{ ∫
0
dk k−2 = − 1

k
|0 = +∞ d = 1,∫

0
dk k−1 = ln k|0 = +∞ d = 2.

(6)

Thus both in d = 1 and d = 2 there is a divergence coming from the lower integration limit.
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(c) By putting d = 3 in the integral on the lhs of (6) one sees that there is no divergence
from the k = 0 limit in this case. To find the leading T -dependence of the finite-temperature
correction (T → 0) to the sublattice magnetization, we note that due to the factor eβωk the
contributions to the integral will decrease very rapidly with k when β → ∞. We therefore
approximate the integral by using the small-k approximations derived in (a) for all k and
also replacing the integral over the MBZ by an integral over all k. Thus (4) becomes∫

all k

d3k
1

e2βJS
√

3 k − 1

√
3

k
=
√

3 · 4π
∫ ∞

0

dk
k

e2βJS
√

3 k − 1

x=2
√

3βJSk
=

4π
√

3

(2
√

3βJS)2

∫ ∞
0

dx
x

ex − 1
(7)

where a change of integration variable led to the last expression in which the remaining
integral is a dimensionless number. The T 2 temperature dependence is now evident from
the factor β−2.

2. 0th and 1st order perturbation theory for the interacting electron gas.

(a) We have
1

n
=

Ω

N
=

4π

3
r3

0 =
4π

3
(rsaB)3. (8)

Using n = k3
F/(3π

2) (derived in the lectures) then gives

kFaB = (3π2n)1/3aB =

(
3π2 · 3

4π(rsaB)3

)1/3

aB =

(
9π

4

)1/3
1

rs
. (9)

In the lectures we also showed that E(0)/N = (3/5)εF , where the Fermi energy εF =
~2k2

F/(2m). Thus

E(0)

N
=

3

5

~2k2
F

2m
=

3

5
(kFaB)2 Ry =

3

5

(
9π

4

)2/3
1

r2
s

Ry ≈ 2.210

r2
s

Ry. (10)

(b) From 1st order perturbation theory, E(1) = 〈FS|HI |FS〉, where HI is the Coulomb
interaction term in H. Thus

E(1)

N
=

1

2ΩN

∑
q 6=0

∑
k,k′

∑
σ,σ′

e2

ε0q2
〈FS|c†k+q,σc

†
k′−q,σ′ck′,σ′ck,σ|FS〉. (11)

Let us consider the matrix element in this expression. The annihilation operators acting
on |FS〉 will give zero unless their wavevectors k and k′ are occupied in |FS〉, giving the
requirement |k| ≤ kF and |k′| ≤ kF . To get a nonzero matrix element, the two creation
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Figure 1: Left: For a given q, the k-integral is the volume of the intersection of two spheres
of radius kF centered at k = 0 and k = −q respectively. Right: Blowup of the intersection.

operators must then bring the state back to |FS〉, which requires q = 0 or k′ = k + q,
σ′ = σ. But q = 0 is excluded from the q-sum in HI . Therefore

〈FS|c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ|FS〉 = δk′,k+qδσ′,σ〈FS|c†k+q,σc

†
k,σck+q,σck,σ|FS〉

= −δk′,k+qδσ′,σ〈FS|n̂k+q,σn̂k,σ|FS〉
= −δk′,k+qδσ′,σθ(kF − |k + q|)θ(kF − |k|), (12)

where we again used that q 6= 0 when anticommuting the two middle operators. Inserting
this in (11) and doing the spin summations (which give a factor of 2) and the summation
over k′ gives

E(1)

N
= − e2

ΩNε0

∑
q 6=0

1

q2

∑
k

θ(kF − |k + q|)θ(kF − |k|). (13)

Converting the two sums to integrals (
∑
k →

Ω
(2π)3

∫
d3k) and using spherical coordinates

(φq, θq, q) and (φk, θk, k) gives

E(1)

N
= − e2

Nε0

Ω

(2π)6

∫ 2π

0

dφq

∫ 1

−1

d(cos θq)

∫ ∞
0

dq q2 1

q2

×
∫ 2π

0

dφk

∫ 1

−1

d(cos θk)

∫ ∞
0

dk k2θ(kF − |k + q|)θ(kF − |k|). (14)

Consider the k-integral (second line here) for a fixed q. The two step functions are equivalent
to the requirements |k| < kF and |k − (−q)| < kF . Thus the k-integral is the volume of
the intersection of two spheres of radius kF , one centered at k = 0 and the other centered
at k = −q (see Fig. 1). Although the latter sphere moves as the direction of q is changed,
the volume of the intersection of the two spheres is independent of the direction of q. Thus
the angular part of the q-integral can be done trivially, giving

∫ 2π

0
dφq

∫ 1

−1
d(cos θq) = 4π.
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Furthermore, one sees from the figure that a nonzero intersection requires the magnitude of
q to satisfy q < 2kF . Taking these things into account gives

E(1)

N
= − e2

Nε0

Ω

16π5

∫ 2kF

0

dqVol(q) (15)

where Vol(q) is the intersection volume, which by symmetry is twice the volume of the right
half of the intersection. To calculate this half-volume, we take the kz axis to point in the
direction of −q. Then the angle θk is as shown in Fig. 1. For a given θk, k is integrated
from kmin to kmax. While kmax = kF independently of θk, kmin is given by (see Fig. 1):

cos θk =
q/2

kmin

⇒ kmin =
q

2 cos θk
. (16)

As θk is increased, kmin grows. The maximum value of θk corresponds to kmin = kmax, giving

(cos θk)min =
q

2kF
. (17)

There are no constraints on the variable φk, so the φk-integral just gives 2π. Thus

Vol(q) = 2 · 2π
∫ 1

q/(2kF )

d(cos θk)

∫ kF

q/(2 cos θk)

dk k2

= 4π

∫ 1

q/(2kF )

d(cos θk) ·
1

3

[
k3
F −

(
q

2 cos θk

)3
]

=
4π

3

{
k3
F

(
1− q

2kF

)
−
(q

2

)3

·
(

1

−2

)[
1−2 −

(
q

2kF

)−2
]}

=
4π

3

(
k3
F −

3

4
k2
F q +

1

16
q3

)
. (18)

(As a check of the correctness of this result, note that for q = 0 it becomes 4πk3
F/3 (i.e. the

volume of a sphere of radius kF ) and for q = 2kF it becomes 0; both cases are as expected.)
Thus

E(1)

N
= − e2

Nε0

Ω

16π5
· 4π

3

∫ 2kF

0

dq

(
k3
F −

3

4
k2
F q +

1

16
q3

)
= − e2

Nε0

Ω

12π4

(
k3
F · 2kF −

3

4
k2
F ·

1

2
(2kF )2 +

1

16
· 1

4
(2kF )4

)
= − e2

Nε0

Ω

16π4
k4
F . (19)

Using Ω/N = 1/n and k3
F = 3π2n gives E(1)/N = − e2

ε0
3

16π2kF . Expressing this in Rydberg
units, it can be rewritten as follows:

E(1)

N
= −e

2

ε0

3

16π2
kF

2ma2
B

~2
Ry
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= −e
2

ε0

3

16π2
kF

2m

~2
· 4πε0~2

me2
· aB Ry

= − 3

2π
(kFaB) Ry

= − 3

2π

(
9π

4

)1/3
1

rs
Ry ≈ −0.916

rs
Ry. (20)

3. Single-particle retarded Green function for noninteracting bosons.

Given the Hamiltonian for noninteracting bosons,

H0 =
∑
ν

ξνc
†
νcν , (21)

we consider the single-particle retarded Green function

GR
0 (ν, t) = −iθ(t)〈[cν(t), c†ν(0)]〉. (22)

Here
cν(t) = eiH0tcνe

−iH0t = e−iξνtcν , (23)

where the last expression follows in exactly the same way as for the fermionic case discussed
in the lecture notes (Sec. 2.4). Thus

GR
0 (ν, t) = −iθ(t)e−iξνt〈[cν , c†ν ]〉 = −iθ(t)e−iξνt (24)

where we used the equal-time commutation relation [cν , c
†
ν ] = 1. The result (24) takes exactly

the same form as for fermions. It follows that the Fourier transform also takes exactly the
same form as for fermions:

GR
0 (ν, ω) =

1

ω − ξν + iη
. (25)

Note however that if we had wished to find the Green functions G> or G<, the expressions
would have contained the expectation value 〈c†νcν〉, which for noninteracting bosons is given
by the Bose-Einstein distribution function (eβξν − 1)−1 and not the Fermi-Dirac distribution
function (eβξν + 1)−1 appearing in the fermionic case.

4. The basis invariance of the trace.

Let us consider two arbitrary basis sets, denoted {|α〉} and {|α̃〉}. Let us define Tr O as the
sum of the diagonal matrix elements of O in the basis {|α〉}:

Tr O ≡
∑
α

〈α|O|α〉. (26)
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Using the resolution of the identity operator I in terms of the basis {|α̃〉}, i.e. I =
∑

α̃ |α̃〉〈α̃|,
the two basis sets can be related as

|α〉 =
∑
α̃

|α̃〉〈α̃|α〉 =
∑
α̃

〈α̃|α〉|α̃〉. (27)

Thus

Tr O =
∑
α

〈α|O|α〉 =
∑
α

∑
α̃

∑
β̃

〈α̃|O|β̃〉〈α̃|α〉∗〈β̃|α〉

=
∑
α̃

∑
β̃

〈α̃|O|β̃〉〈β̃| (
∑
α

|α〉〈α|)︸ ︷︷ ︸
I

|α̃〉 =
∑
α̃

∑
β̃

〈α̃|O|β̃〉 〈β̃|α̃〉︸ ︷︷ ︸
δα̃β̃

=
∑
α̃

〈α̃|O|α̃〉, (28)

which shows that Tr O is also equal to the sum of the diagonal elements of O in the basis
{|α̃〉}. As the basis sets used here are arbitrary we conclude that the sum of the diagonal
elements is independent of the basis.

In the above proof we expressed both the ket |α〉 and the bra 〈α| in terms of the new basis,
thus using the resolution of the identity twice. Actually, a simpler proof can be given by
just using it once, e.g. for the ket only, as follows:

Tr O =
∑
α

〈α|O|α〉 =
∑
α,α̃

〈α|O|α̃〉〈α̃|α〉 =
∑
α,α̃

〈α̃|α〉〈α|O|α̃〉 =
∑
α̃

〈α̃|O|α̃〉. (29)
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