
TFY4210, Quantum theory of many-particle systems, 2016:
Solution to tutorial 10

A model of interacting spins on a one-dimensional lattice.

Note that in this solution I generally do not write hats (̂ ) on operators. Also, in this
solution I have included an overall multiplicative parameter J > 0 of dimension energy in
the expression for the Hamiltonian (this factor was missing in the problem text). Thus the
original Hamiltonian is written

H = −J
∑
j

[
1 + γ

2
σx
j σ

x
j+1 +

1− γ
2

σy
jσ

y
j+1 + λσz

j

]
. (1)

(a) We have

[σ+
i , σ

−
j ] =

[
i−1∏
m=1

(1− 2nm)

]
ci

[
j−1∏
n=1

(1− 2nn)

]
c†j−

[
j−1∏
n=1

(1− 2nn)

]
c†j

[
i−1∏
m=1

(1− 2nm)

]
ci. (2)

Taking i < j, noting that (1 − 2ni) is the only factor involving a number operator that
doesn’t commute with everything else, the expression can be simplified to

[σ+
i , σ

−
j ] =

[
i−1∏
m=1

(1− 2nm)

][
i−1∏
n=1

(1− 2nn)

][
j−1∏

n=i+1

(1− 2nn)

] [
ci(1− 2ni)c

†
j − (1− 2ni)c

†
jci

]
=

[
i−1∏
m=1

(1− 2nm)

][
i−1∏
n=1

(1− 2nn)

][
j−1∏

n=i+1

(1− 2nn)

]
[ci(1− 2ni) + (1− 2ni)ci] c

†
j. (3)

The rightmost expression inside square brackets can be rewritten as

ci − 2cini + ci − 2nici = 2ci + 2(−ci − nici)− 2nici = −4nici = −4c†icici = 0 (4)

(here we used [ni, ci] = −ci and c2i = 0). Thus [σ+
i , σ

−
j ] = 0. QED.

(b) We have

σ+
i σ

+
i+1 =

[∏
j<i

(1− 2nj)

]
ci

[ ∏
m<i+1

(1− 2nm)

]
ci+1

=

[∏
j<i

(1− 2nj)

]
ci

[∏
m<i

(1− 2nm)

]
(1− 2ni)ci+1

=

[∏
j<i

(1− 2nj)
2

]
ci(1− 2ni)ci+1. (5)
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The expression inside square brackets is equal to 1. This can be seen by direct calculation:1

(1− 2nj)
2 = 1− 4nj + 4n2

j = 1− 4nj + 4nj = 1 (6)

where we used n2
j = nj. Furthermore,

ci(1− 2ni) = ci − 2cini = ci + 2(−ci − nici) = −ci − 2nici = −ci (7)

where we again used c2i = 0.2 Thus

σ+
i σ

+
i+1 = −cici+1 = ci+1ci. (8)

(c) Starting from the fermionic Hamiltonian

H = −J
∑
i

[
(c†i+1ci + c†ici+1) + γ(ci+1ci + c†ic

†
i+1)− 2λc†ici + λ

]
, (9)

inserting the Fourier expansion of the cre/ann operators gives

H = −NJλ− J
∑
k,k′

{
c†kck′(e

−ika + eik
′a)F (−k, k′) (10)

+ γ[ckck′e
ikaF (k, k′) + c†kc

†
k′e
−ik′aF (−k,−k′)]− 2λc†kck′F (−k, k′)

}
, (11)

where F (k, k′) = N−1
∑N

j=1 e
i(k+k′)ja. Using F (k, k′) = δk,−k′ (Eq. (31) in problem text)

gives

H = −J
∑
k

{
2(cos ka− λ)c†kck + γ(ckc−k + c†kc

†
−k)eika + λ

}
. (12)

The anomalous part can be rewritten as∑
k

(ckc−k + c†kc
†
−k)eika =

∑
k

(c−kck + c†−kc
†
k)e−ika = −

∑
k

(ckc−k + c†kc
†
−k)e−ika. (13)

To get the first equality, define k′ = −k so that the sum becomes a sum over the values
of k′ = −k (as the allowed values of k are symmetrically distributed around 0, the sum
over k′ = −k goes over the same values as the sum over k), and then just rename k′ → k
(can be done since it is a dummy summation variable). To get the second equality we used
{ck, c−k} = {c†k, c

†
−k} = 0. Writing the anomalous part as the average of the first and last

expressions in (13) gives

1

2

∑
k

(ckc−k + c†kc
†
−k)(eika − e−ika) = i

∑
k

sin ka(ckc−k + c†kc
†
−k). (14)

1Alternatively, the same conclusion can be reached from the fact that the eigenvalues of nj are restricted
to 0 and 1, so the action of (1− 2nj)

2 on a basis state with a definite number of fermions on site j just gives
a multiplicative factor (1− 2 · (0 or 1))2 = (±1)2 = 1.

2Alternatively, the same conclusion can be reached by noting that for the operator ci(1− 2ni) to give a
nonzero result, the site i must be occupied before ci acts, and thus 1 − 2ni acting before will give a factor
1− 2 · 1 = −1 in that case. (If the site is empty, the factor would instead be +1, but in that case ci will in
any case kill the state so the sign is insignificant.)
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Putting everything together, we find that

H = J
∑
k

[2(λ− cos ka)c†kck + iγ sin ka(c−kck + c†−kc
†
k)− λ]. (15)

You can check that this expression is Hermitian, as it should be.

(d) We start from
dk = ukck − ivkc†−k. (16)

Taking the adjoint and using that uk and vk are real gives d†k = ukc
†
k + ivkc−k. Thus

d†−k = u−kc
†
−k + iv−kck. Using the (anti-)symmetries of uk and vk this becomes

d†−k = ukc
†
−k − ivkck. (17)

We now have two equations ((16) and (17)) in two unknowns ck and c†−k. Multiplying (16)

by uk and (17) by ivk, and adding the resulting equations, the contribution from c†−k cancels,
leaving

ukdk + ivkd
†
−k = (u2k + v2k)ck = ck, (18)

which was to be shown. In the last equality here we used that

u2k + v2k = 1, (19)

which is a direct consequence of the relations uk = cos(θk/2), vk = sin(θk/2).

(e) We can use (18) to rewrite (15) in terms of the d-operators. The anomalous terms are
(you should show this)

iJ
∑
k

[(λ− cos ka)2ukvk − γ sin ka(u2k − v2k)]d†kd
†
−k + h.c. (20)

Using

u2k − v2k = cos θk, (21)

2ukvk = sin θk, (22)

and choosing θk such that the anomalous part vanishes, we get the condition

(λ− cos ka) sin θk = γ sin ka cos θk, (23)

i.e.

tan θk =
γ sin ka

λ− cos ka
. (24)

(Note that the rhs is odd in k, consistent with the property θ−k = −θk.)
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(f) For θk satisfying (24) the Hamiltonian reduces to the ordinary (i.e., non-anomalous) part
which is found to be

H = J
∑
k

{[2(λ− cos ka)(u2k − v2k) + 2γ sin ka · 2ukvk]d†kdk + 2(λ− cos ka)v2k

− γ sin ka · 2ukvk − λ} (25)

which is in the desired form
H =

∑
k

εkd
†
kdk + C. (26)

Using (21)-(22) and

v2k =
1

2
(1− cos θk) (27)

(which follows from subtracting (21) from (19)), we find

εk = 2J [(λ− cos ka) cos θk + γ sin ka sin θk], (28)

C = J
∑
k

[(λ− cos ka)(1− cos θk)− γ sin ka sin θk − λ]. (29)

The constant C can be rewritten as

C = −J
∑
k

[(λ− cos ka) cos θk + γ sin ka sin θk + cos ka] = −1

2

∑
k

εk, (30)

where we used
∑

k cos ka = 0 to get the last equality. We can furthermore rewrite εk as

εk = 2J cos θk[λ− cos ka+ γ sin ka tan θk] = 2J cos θk

[
λ− cos ka+ γ sin ka

γ sin ka

λ− cos ka

]
=

2J cos θk
λ− cos ka

[(λ− cos ka)2 + γ2 sin2 ka]. (31)

From the identity cos2 x = (1 + tan2 x)−1 we have

cos2 θk =
1

1 + tan2 θk
=

(λ− cos ka)2

(λ− cos ka)2 + γ2 sin2 ka
. (32)

This only determines cos θk up to a sign. The condition (24) does not put any constraints
on this sign. Here we will choose the sign such that3

cos θk =
λ− cos ka√

(λ− cos ka)2 + γ2 sin2 ka
. (33)

(This choice satisfies cos θ−k = cos θk which follows from θ−k = −θk.) Inserting this into (31)
gives

εk = 2J
√

(λ− cos ka)2 + γ2 sin2 ka. (34)

3Alternative choices for this sign are possible. For example, one could replace the rhs of (33) by its
absolute value. Different choices will only lead to differences in the mathematical description of the model
with no consequences for the physics.
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Summarizing, the Hamiltonian is

H =
∑
k

εk

(
d†kdk −

1

2

)
(35)

where εk is given by (34). Thus we see that, remarkably, the particular model (1) of inter-
acting spins on a one-dimensional lattice can be rewritten as (35) describing noninteracting
fermions.

(g) From (34) one sees that εk ≥ 0 for all k, and therefore all occupation numbers for the
d-fermions are zero in the ground state. Thus the ground state energy is

E0(γ, λ) =
∑
k

εk

(
0− 1

2

)
= −J

∑
k

√
(λ− cos ka)2 + γ2 sin2 ka. (36)

(h) Since the ground state |G〉 contains no d-fermions, it is the vacuum of the d-fermions:

dk|G〉 = 0 for all k. (37)

These equations define |G〉. We note that dk only involves ck and c†−k and that d−k only

involves c−k and c†k. This means that the problem of finding the ground state decouples
into independent subproblems, one for each |k|, so the ground state can be written |G〉 =∏

k≥0 |Gk〉, where |Gk〉 is the vacuum of dk and d−k. For concreteness let k > 0 in the
following. Then k and −k are inequivalent wavevectors representing different states. Because
each of them can be occupied by either 0 or 1 c-fermions, |Gk〉 can be expanded as

|Gk〉 = αk|0〉+ βkc
†
k|0〉+ γkc

†
−k|0〉+ δkc

†
kc
†
−k|0〉 (38)

where |0〉 is the vacuum of the c-fermions and αk, βk, γk and δk are parameters to be
determined from the two conditions

0 = dk|Gk〉 = (cos
θk
2
ck − i sin

θk
2
c†−k)|Gk〉, (39)

0 = d−k|Gk〉 = (cos
θk
2
c−k + i sin

θk
2
c†k)|Gk〉. (40)

The condition (39) becomes

0 = cos
θk
2
βkckc

†
k|0〉+ cos

θk
2
δkckc

†
kc
†
−k|0〉 − i sin

θk
2
αkc

†
−k|0〉 − i sin

θk
2
βkc
†
−kc
†
k|0〉

= cos
θk
2
βk|0〉+ cos

θk
2
δkc
†
−k|0〉 − i sin

θk
2
αkc

†
−k|0〉+ i sin

θk
2
βkc
†
kc
†
−k|0〉, (41)

which gives

βk = 0, (42)

cos
θk
2
δk − i sin

θk
2
αk = 0. (43)
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The condition (40) becomes

0 = cos
θk
2
γkc−kc

†
−k|0〉+ cos

θk
2
δkc−kc

†
kc
†
−k|0〉+ i sin

θk
2
αkc

†
k|0〉+ i sin

θk
2
γkc
†
kc
†
−k|0〉

= cos
θk
2
γk|0〉 − cos

θk
2
δkc
†
k|0〉+ i sin

θk
2
αkc

†
k|0〉+ i sin

θk
2
γkc
†
kc
†
−k|0〉, (44)

which gives

γk = 0, (45)

− cos
θk
2
δk + i sin

θk
2
αk = 0. (46)

The last equality here is identical to what we got from the first condition. Thus we find
βk = γk = 0, and

αk = N cos
θk
2
, (47)

δk = iN sin
θk
2
, (48)

where N is a normalization constant. Normalization of (38) requires |αk|2 + |βk|2 + |γk|2 +
|δk|2 = 1, which implies |N |2 = 1, so we can take N = 1. Thus for k > 0 one finds

|Gk〉 =

(
cos

θk
2

+ i sin
θk
2
c†kc
†
−k

)
|0〉. (49)

In contrast, for k = 0 we have k = −k and thus only a single wavevector is involved. In this
case one instead finds (can you show this?)

|G0〉 =

{
c†0|0〉 if λ < 1,
|0〉 if λ > 1.

(50)

Summarizing, we can thus write

|G〉 =

(∏
k≥0

Ĝk

)
|0〉 where Ĝk =

{
cos(θk/2) + i sin(θk/2)c†kc

†
−k for k > 0,

Θ(λ− 1) + Θ(1− λ)c†0 for k = 0,
(51)

where Θ(x) is the Heaviside (step) function.

It is of course of interest to understand the expression (51) for the ground state |G〉 in terms
of the behaviour of the spins in the original spin model. To illustrate this, and as a check of
our results, let us consider the special case λ→∞ which is easy to analyze. In this limit H
is dominated by the term −Jλ

∑
j σ

z
j , so all spins will point up in the ground state, which

thus is a product over all sites j of the eigenstate of the operator σz
j with eigenvalue +1.

The Jordan-Wigner expression σz
j = 1 − 2nj shows that this implies the eigenvalue 0 for

all fermion number operators nj. Thus the ground state should correspond to the vacuum
state |0〉 of the c-fermions. Let us check this: For λ→∞, one sees from (24) and (33) that
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θk → 0. We then see from (51) that in the limit λ → ∞, Ĝk becomes 1 for each k in the
product, so the ground state is indeed given by |G〉 = |0〉.

(i) The diagonal form (35) of H implies that excited states are obtained by creating d-
fermions. As such a fermion has energy εk, where k is its wavevector, the lowest excitation
energy is obtained by creating only one d-fermion, and choosing its wavevector k such that εk
is minimized. We are here looking for the parameter values (γ, λ) for which the system has
gapless excitations, i.e. the lowest excitation energy is 0, or approaches 0 in the thermody-
namic limit N →∞. So we should look for solutions of the equation εk = 0 in this limit. The
expression inside the square root in (34) must thus vanish, i.e. (λ− cos ka)2 +γ2 sin2 ka = 0.
Since both terms are nonnegative it follows that we must have

λ = cos ka and γ sin ka = 0. (52)

One solution is k = 0 and λ = 1, with γ arbitrary. So the model is gapless along the line γ
arbitrary, λ = 1 in (γ, λ)-space. Another solution is γ = 0 and λ = cos ka, where the latter
equation can be satisfied for some k provided that −1 ≤ λ ≤ 1. So the model is also gapless
along the line γ = 0, −1 ≤ λ ≤ 1 in (γ, λ)-space.
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