TFY4210, Quantum theory of many-particle systems, 2016:
Solution to tutorial 11

1. Matsubara and retarded Green functions for noninteracting bosons.

(a) We have
GO (v, ) = —(T+(c,(1)ch(0))). (1)

Here

HOTCye_HOT. (2)

One way to calculate this operator is to solve the differential equation obeyed by this oper-
ator. Differentiating wrt t gives
de, (1)
dr

c(r)=¢e

_ eHOTHocye—HOT + eHoTCV(_HO)e—HoT — eH()T [H07 Cu] e—HoT — —fl,CV(T). (3)
§
—svCu

The solution to this differential equation, for the initial condition ¢,(0) = ¢,, is
e, (1) = e %7c,. (4)

Another way is to use the Baker-Hausdorff formula (we omit the details here). Yet another
way is to note that (2) can be simplified to (can you see why?)

Tfy’flu

c,(r)=ce c e T (5)

If we now act with this operator on a many-particle basis state with n, bosons in single-
particle state v, we get (denoting the basis state as |n,) for short)

eTfuﬁu _7'51/7?741/

c(T)ln) = 7))
= e TmeTvve i)
— e_TgunueTfu(nu_l)CV|nV>

e_TE”cy|nl,>. (6)

c, e

(A fine point: For the case n, = 0 the factor e™ (™~ wouldn’t actually appear, but the
expression is correct also for this case since ¢,|n,) = 0 then.) As this expression is valid for
any basis state |n,) we arrive at (4) as an operator identity.

Let us return to (1). For 7 > 0 the operators are already time-ordered, so

GO, >0) = —((r)e(0) = — % (ec)

v

= T (1+{clc,)) = —e (1 +np(£)). (7)

For 7 < 0 the time ordering operator reverses the order of the operators. As they are bosonic,
there is no sign change associated with this time ordering. Thus

GO (v, 7 < 0) = ~(cf(0)es(7)) = —e T (c]e) = e *Tnp(&,). (8)



Thus we can write

GO (v, 7) = —e T [0(7)(1 + np(&)) + 0(=T)ns(&)]. (9)

(b) We have

B ' 3 |

GO n) = / dTewnTg(O)(V’T):—(1+n3(§u))/ dr e(n =87
0 0

1

= (L np(§) g (e - ) (10)
Now use that for bosonic Matsubara frequencies,
W = I e . (11)
g
Furthermore,
L+np(§) =1+ ! = (12)

eﬁfu —1 - 1— e*ﬂ&u.
Inserting these results, the Matsubara Green function becomes

1

O (v, = —. 13
GO v.i,) = ——¢ (13)
The retarded Green function is
1
GRO(y, w) = GO, iw, =\ 14
( ) ( ) Wy —w-+in W — f,/ + 277 ( )
2. Impurity scattering: Impurity average and Feynman diagrams.
(a) For n = 3 we must consider
1
= ko ko) = SY S| (g [ #r)
Jji Jj2 73 i
e*i(kfk:l)-le e*i(klfkig)-RjQ e*i(kg*k/)-RjS . (15)

We want the contribution corresponding to j; = jo # j3. Then the product of exponentials

simplifies to

—i(k—k)-Rj, ,—i(ka—Kk')-R

s (16)

Thus the average over R, gives 0 k,, while the average over Rj, gives 0, r. The other N —2
averages just give 1. Thus the total average is g k,0k, x» Which can be rewritten g g, 0k k-
The site summations for this contribution give

ZZZ(SJLJ‘QG - 5j17j3) = N?>—- N~ N> (17)

J1 J2 J3
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Figure 1: The Feynman diagram for problem 2(a).

Thus the contribution to the impurity average is N?0p g,0r,. Considering the impurity

average of Eq. (120) in the notes, the contribution to G®)(k, k') that we are looking for is
therefore

GOk, k)| sjrmjprir = > GOR)U (k= K1)GO (k1)U (k1 — k)G () U (ky — k)G (K)

kik2
p(k = kyp(ky — k2)p(ks — k') |«j —jo2j
= > GOR)U(k — k)G (k) U (k1 — k)G (o) U (ks — k)G (K)

k1,k2
N25k,k25k,k/

= N*) GOKk)U(k — k)G (k1)U (ky — k)G (k)U(0)G (k)6 i

= GOK) =t O (18)
The Feynman diagram corresponding to G® (k)|«j,—j,,» is shown in Fig. 1.
(b) For n = 4 we must consider

p(k — ki)p(ki — k2)p(k2 — k3)p(ks — k') Z Z Z Z [

Ji J2 J3  Ja

i(k2— ks)fQ3e i(k3‘k/)fg4' (19)

(5 n)

)

o—ilk—k1)-R;

i p—ilki—k2)-R;

J2€

We want the contribution corresponding to j; = j3 # jo = j4. Then the product of expo-

nentials simplifies to

6—i(k—k1+k2—k3)-Rj1 e—i(kl—k2+k3—k/).Rj2 ) (20)



Thus the average over R; gives 0g_k, ks—k,, While the average over R, gives Og, i, k/—ks-
The other N — 2 averages just give 1. Thus the total average iS O—rk, ks—ks Ok ko k' —ks Which
can be rewritten dx_g, ky—k,Ok k- The site summations for this contribution give

SN 6550iin(1 = 6j,5,) = N* = N &~ N2, (21)
Ji o J2 Js  Ja

Thus the contribution to the impurity average is N20g_g, ks—kyOk k. Considering the impurity

average of Eq. (120) in the notes, the contribution to G® (k, k') that we are looking for is
therefore

GD ke, K')|<jy=jsin=jy = Z GO(k)U(k — k)G (k1)U (ky — k2)G (k2)

k1,ka,k3
U(ky — k3)GO (ks)U (ks — k)G (K
p(k —ki)p(kir — ko) p(ka — ks)p(ks — )| <j,=jsja=ja”
= Y GURUKk k)G (k1)U (ks — k2)GO (k)
k1,k2,k3
U(ks — k3)G (k3)U (k3 — k)G (K')
N26k ke ks key Ok k!
= N° Z GOR)U (k — K1)GO (k1)U (k1 — k2)G© (k)

k1,k2
x Uk, —k)GO(k —ky + ky)U(ky — k)G (k)
= GW(k)| <= jarsa=js Ok (22)

The Feynman diagram corresponding to G (k)|<;,—j,2j,—j,» is shown in Fig. 2. While the
labeling of wavevectors in this diagram is perfectly correct and fine, it is also possible to
use an alternative and equivalent labeling of wavevectors that is somewhat more “symmet-
rical”. This alternative labeling is shown in Fig. 3 and was obtained by replacing the
summation variable ko by a different summation variable kj = k + k; — k; and then re-
naming k), as ko. This corresponds to the following alternative and equivalent expression for

GO (k, )| =guimsi

GOk, k) <jrmjsriomir = N* D GOR)U (k= k1)GO (k1)U (k — ko) G (K + by — k)
k1,k2
x Uk, — k)G (ky)U(ky — k)G (k)6 (23)
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Figure 2: The Feynman diagram for problem 2(b).
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Figure 3: The Feynman diagram for problem 2(b) with an alternative labeling of wavevectors.



3. Impurity scattering: Feynman diagrams at order n = 4.

The Feynman diagrams are given below. To understand where they come from it may be
helpful to keep in mind the impurity average at order n = 4, which reads

p(k — ki)p(k1 — k2)p(ks — k3)p(ks — k')
1 ) ) . . ,
— Z Z Z Z H (5 / d3RZ) e—l(k—lﬂ)‘le e—l(k1—k2)~Rj2 6—2(k2—k3)~Rj3 e—l(k:s—k )-Rj, ) (24)
Ji J2 J3 ja ¢

The various Feynman diagrams are associated with the various ways in which the impurities
labeled ji, j2, 73 and j4 are different or the same. I have indicated this characteristic next
to each of the diagrams below. The number of impurity crosses, called m, is also indicated.
There turns out to be 15 different Feynman diagrams at this order.
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Note that in these figures the momentum is conserved at every point where an interaction
line meets the electron lines, and also at every impurity cross (i.e. the sum of momenta
going out from each impurity cross is zero). Based on these figures, we find the following
expressions for the 6 self-energy diagrams:

SW(k) = N3(U(0)*> Uk — k)U(ky — k)(G© (Kk1))?,
k1

SN k) = N*Y Uk — ka)U(ky — k)U(k — k1)U (ks — k)G (k)G (k1 + k2 — k)G (ks),

0y = N ki Uk — k) U(ky — k)U(—k2)U (k2)(G© (k1))2G O (ky + ks),

202) (k) = NQII;(I(;) > Ulk = kx)U(kz — kn)U (k1 — k)G (k2))°G1 (K,

S0 (k) = N2U(0) kzk Uk — ky)U (kg — k1)U (k1 — k)G (ko) (GO (ky))?,

S0k = N kUk<k; — ks)U (ks — ko) U (kg — k1)U (k1 — k)G (k1)G© (k)G (kes).
oo ks

Note that in each expression, the number of internal wavevector summations is given by
n—m where n is the order of the diagram (i.e. n = 4 here) and m is the number of impurity
crosses in the diagram.

Other correct ways of labeling the momenta (i.e., wavevectors) than those shown on the pre-
vious pages are also possible. The resulting expressions will then superficially look different
from those above, but can be shown to be identical by renaming the dummy summation
variables (the wavevectors being summed over).





