
TFY4210, Quantum theory of many-particle systems, 2016:
Solution to tutorial 11

1. Matsubara and retarded Green functions for noninteracting bosons.

(a) We have
G(0)(ν, τ) = −〈Tτ (cν(τ)c†ν(0))〉. (1)

Here
cν(τ) = eH0τcνe

−H0τ . (2)

One way to calculate this operator is to solve the differential equation obeyed by this oper-
ator. Differentiating wrt t gives

dcν(τ)

dτ
= eH0τH0cνe

−H0τ + eH0τcν(−H0)e
−H0τ = eH0τ [H0, cν ]︸ ︷︷ ︸

−ξνcν

e−H0τ = −ξνcν(τ). (3)

The solution to this differential equation, for the initial condition cν(0) = cν , is

cν(τ) = e−ξντcν . (4)

Another way is to use the Baker-Hausdorff formula (we omit the details here). Yet another
way is to note that (2) can be simplified to (can you see why?)

cν(τ) = eτξν n̂νcνe
−τξν n̂ν . (5)

If we now act with this operator on a many-particle basis state with nν bosons in single-
particle state ν, we get (denoting the basis state as |nν〉 for short)

cν(τ)|nν〉 = eτξν n̂νcνe
−τξν n̂ν |nν〉

= e−τξνnνeτξν n̂νcν |nν〉
= e−τξνnνeτξν(nν−1)cν |nν〉
= e−τξνcν |nν〉. (6)

(A fine point: For the case nν = 0 the factor eτξν(nν−1) wouldn’t actually appear, but the
expression is correct also for this case since cν |nν〉 = 0 then.) As this expression is valid for
any basis state |nν〉 we arrive at (4) as an operator identity.

Let us return to (1). For τ > 0 the operators are already time-ordered, so

G(0)(ν, τ > 0) = −〈cν(τ)c†ν(0)〉 = −e−ξντ 〈cνc†ν〉
= −e−ξντ (1 + 〈c†νcν〉) = −e−ξντ (1 + nB(ξν)). (7)

For τ < 0 the time ordering operator reverses the order of the operators. As they are bosonic,
there is no sign change associated with this time ordering. Thus

G(0)(ν, τ < 0) = −〈c†ν(0)cν(τ)〉 = −e−ξντ 〈c†νcν〉 = −e−ξντnB(ξν). (8)
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Thus we can write

G(0)(⇧,  ) = �e�⌅�⇧ [⌅( )(1 + nB(⌃⇤)) + ⌅(� )nB(⌃⇤)] . (9)

(b) We have

G(0)(⇧, i⌦n) =

� �

0

d ei⌃n⇧G(0)(⇧,  ) = �(1 + nB(⌃⇤))

� �

0

d e(i⌃n�⌅�)⇧

= �(1 + nB(⌃⇤))
1

i⌦n � ⌃⇤
(e(i⌃n�⌅�)� � 1) (10)

Now use that for bosonic Matsubara frequencies,

⌦n =
2⌥n

�
⇧ ei⌃n� = 1. (11)

Furthermore,

1 + nB(⌃⇤) = 1 +
1

e�⌅� � 1
=

1

1� e��⌅�
. (12)

Inserting these results, the Matsubara Green function becomes

G(0)(⇧, i⌦n) =
1

i⌦n � ⌃⇤
. (13)

The retarded Green function is

GR(0)(⇧,⌦) = G(0)(⇧, i⌦n)
���
i⌃n⇤⌃+i⇥

=
1

⌦ � ⌃⇤ + i⇤
. (14)

2. Impurity scattering: Impurity average and Feynman diagrams.

(a) For n = 3 we must consider

�(k � k1)�(k1 � k2)�(k2 � k⌅) =
⌃

j1

⌃

j2

⌃

j3

⌅
⌥

i

⇥
1

⇥

�
d3Ri

⇤⇧

e�i(k�k1)·Rj1e�i(k1�k2)·Rj2e�i(k2�k�)·Rj3 . (15)

We want the contribution corresponding to j1 = j2 ⌃= j3. Then the product of exponentials
simplifies to

e�i(k�k2)·Rj1e�i(k2�k�)·Rj3 (16)

Thus the average over Rj1 gives ⇥k,k2 , while the average over Rj3 gives ⇥k2,k� . The other N�2
averages just give 1. Thus the total average is ⇥k,k2⇥k2,k� which can be rewritten ⇥k,k2⇥k,k� .
The site summations for this contribution give

⌃

j1

⌃

j2

⌃

j3

⇥j1,j2(1� ⇥j1,j3) = N2 �N ⌅ N2. (17)
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Figure 1: The Feynman diagram for problem 2(a).

Thus the contribution to the impurity average is N2⇥k,k2⇥k,k� . Considering the impurity

average of Eq. (120) in the notes, the contribution to G(3)(k, k⌅) that we are looking for is
therefore

G(3)(k, k⌅)|“j1=j2 ⇧=j3” =
⌃

k1,k2

G(0)(k)U(k � k1)G(0)(k1)U(k1 � k2)G(0)(k2)U(k2 � k⌅)G(0)(k⌅)

�(k � k)�(k1 � k2)�(k2 � k⌅)|“j1=j2 ⇧=j3”

=
⌃

k1,k2

G(0)(k)U(k � k1)G(0)(k1)U(k1 � k2)G(0)(k2)U(k2 � k⌅)G(0)(k⌅)

N2⇥k,k2⇥k,k�

= N2
⌃

k1

G(0)(k)U(k � k1)G(0)(k1)U(k1 � k)G(0)(k)U(0)G(0)(k)⇥k,k�

⇤ G(3)(k)|“j1=j2 ⇧=j3”⇥k,k� . (18)

The Feynman diagram corresponding to G(3)(k)|“j1=j2 ⇧=j3” is shown in Fig. 1.

(b) For n = 4 we must consider

�(k � k1)�(k1 � k2)�(k2 � k3)�(k3 � k⌅) =
⌃

j1

⌃

j2

⌃

j3

⌃

j4

⌅
⌥

i

⇥
1

⇥

�
d3Ri

⇤⇧

e�i(k�k1)·Rj1e�i(k1�k2)·Rj2e�i(k2�k3)·Rj3e�i(k3�k�)·Rj4 . (19)

We want the contribution corresponding to j1 = j3 ⌃= j2 = j4. Then the product of expo-
nentials simplifies to

e�i(k�k1+k2�k3)·Rj1e�i(k1�k2+k3�k�)·Rj2 . (20)
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Thus the average over Rj1 gives ⇥k�k1,k3�k2 , while the average over Rj2 gives ⇥k1�k2,k��k3 .
The other N � 2 averages just give 1. Thus the total average is ⇥k�k1,k3�k2⇥k1�k2,k��k3 which
can be rewritten ⇥k�k1,k3�k2⇥k,k� . The site summations for this contribution give

⌃

j1

⌃

j2

⌃

j3

⌃

j4

⇥j1,j3⇥j2,j4(1� ⇥j1,j2) = N2 �N ⌅ N2. (21)

Thus the contribution to the impurity average is N2⇥k�k1,k3�k2⇥k,k� . Considering the impurity

average of Eq. (120) in the notes, the contribution to G(4)(k, k⌅) that we are looking for is
therefore

G(4)(k, k⌅)|“j1=j3 ⇧=j2=j��
4

=
⌃

k1,k2,k3

G(0)(k)U(k � k1)G(0)(k1)U(k1 � k2)G(0)(k2)

⇥ U(k2 � k3)G(0)(k3)U(k3 � k⌅)G(0)(k⌅)

⇥ �(k � k1)�(k1 � k2)�(k2 � k3)�(k3 � k⌅)|“j1=j3 ⇧=j2=j4”

=
⌃

k1,k2,k3

G(0)(k)U(k � k1)G(0)(k1)U(k1 � k2)G(0)(k2)

⇥ U(k2 � k3)G(0)(k3)U(k3 � k⌅)G(0)(k⌅)

⇥ N2⇥k�k1,k3�k2⇥k,k�

= N2
⌃

k1,k2

G(0)(k)U(k � k1)G(0)(k1)U(k1 � k2)G(0)(k2)

⇥ U(k1 � k)G(0)(k � k1 + k2)U(k2 � k1)G(0)(k)⇥k,k�

⇤ G(4)(k)|“j1=j3 ⇧=j2=j4”⇥k,k� . (22)

The Feynman diagram corresponding to G(4)(k)|“j1=j3 ⇧=j2=j4” is shown in Fig. 2. While the
labeling of wavevectors in this diagram is perfectly correct and fine, it is also possible to
use an alternative and equivalent labeling of wavevectors that is somewhat more “symmet-
rical”. This alternative labeling is shown in Fig. 3 and was obtained by replacing the
summation variable k2 by a di⇤erent summation variable k⌅2 ⇤ k + k2 � k1 and then re-
naming k⌅2 as k2. This corresponds to the following alternative and equivalent expression for
G(4)(k, k⌅)|“j1=j3 ⇧=j2=j4”:

G(4)(k, k⌅)|“j1=j3 ⇧=j2=j4” = N2
⌃

k1,k2

G(0)(k)U(k � k1)G(0)(k1)U(k � k2)G(0)(k1 + k2 � k)

⇥ U(k1 � k)G(0)(k2)U(k2 � k)G(0)(k)⇥k,k� . (23)
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Figure 2: The Feynman diagram for problem 2(b).

Figure 3: The Feynman diagram for problem 2(b) with an alternative labeling of wavevectors.
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3. Impurity scattering: Feynman diagrams at order n = 4.

The Feynman diagrams are given below. To understand where they come from it may be
helpful to keep in mind the impurity average at order n = 4, which reads

�(k � k1)�(k1 � k2)�(k2 � k3)�(k3 � k⌅)

=
⌃

j1

⌃

j2

⌃

j3

⌃

j4

⌥

i

⇥
1

⇥

�
d3Ri

⇤
e�i(k�k1)·Rj1e�i(k1�k2)·Rj2e�i(k2�k3)·Rj3e�i(k3�k�)·Rj4 .(24)

The various Feynman diagrams are associated with the various ways in which the impurities
labeled j1, j2, j3 and j4 are di⇤erent or the same. I have indicated this characteristic next
to each of the diagrams below. The number of impurity crosses, called m, is also indicated.
There turns out to be 15 di⇤erent Feynman diagrams at this order.
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Note that in these figures the momentum is conserved at every point where an interaction
line meets the electron lines, and also at every impurity cross (i.e. the sum of momenta
going out from each impurity cross is zero). Based on these figures, we find the following
expressions for the 6 self-energy diagrams:

�(4�)(k) = N3(U(0))2
⌃

k1

U(k � k1)U(k1 � k)(G(0)(k1))
3,

�(9�)(k) = N2
⌃

k1,k2

U(k � k2)U(k2 � k)U(k � k1)U(k1 � k)G(0)(k1)G(0)(k1 + k2 � k)G(0)(k2),

�(10�)(k) = N2
⌃

k1,k2

U(k � k1)U(k1 � k)U(�k2)U(k2)(G(0)(k1))
2G(0)(k1 + k2),

�(12�)(k) = N2U(0)
⌃

k1,k2

U(k � k2)U(k2 � k1)U(k1 � k)(G(0)(k2))
2G(0)(k1),

�(13�)(k) = N2U(0)
⌃

k1,k2

U(k � k2)U(k2 � k1)U(k1 � k)G(0)(k2)(G(0)(k1))
2,

�(15�)(k) = N
⌃

k1,k2,k3

U(k � k3)U(k3 � k2)U(k2 � k1)U(k1 � k)G(0)(k1)G(0)(k2)G(0)(k3).

Note that in each expression, the number of internal wavevector summations is given by
n�m where n is the order of the diagram (i.e. n = 4 here) and m is the number of impurity
crosses in the diagram.

Other correct ways of labeling the momenta (i.e., wavevectors) than those shown on the pre-
vious pages are also possible. The resulting expressions will then superficially look di⇤erent
from those above, but can be shown to be identical by renaming the dummy summation
variables (the wavevectors being summed over).
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