
TFY4210, Quantum theory of many-particle systems, 2016:
Tutorial 12

1. The full Born approximation.

(c) In the lectures we showed that Ḡ(k, ipm) can be expressed as

Ḡ(k, ipm) =
1

(G(0)(k, ipm))−1 − Σ(k, ipm)
=

1

ipm − ξk − Σ(k, ipm)
(1)

where Σ(k, ipm) is the self-energy, defined as the sum of all self-energy diagrams. We found
an approximate result for Ḡ(k, ipm) by approximating the self-energy Σ(k, ipm) as

This is called the ”first Born approximation,” which is why we have here defined the sum
of these two self-energy diagrams as Σ1B(k, ipm). In the following we will study a different
approximation to the self-energy, given by the (infinite) sum of all self-energy diagrams with
a single impurity cross:

This is called the “full Born approximation,” which is why we have defined this sum as
ΣFB(k, ipm). Note that the first two terms in this infinite sum constitute the “first Born
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approximation” Σ1B(k, ipm).

(a) Explain under what physical conditions (specified by the impurity density nimp and the
strength of the scattering potential U(r)) you expect Σ1B to be a good approximation to the
full self-energy. Do the same for ΣFB.

(b) Give the mathematical expression for the nth diagram in ΣFB(k, ipm), i.e. the diagram
with n interaction lines where n is an arbitrary positive integer. (You may find it helpful to
first consider the expressions for the first few diagrams in ΣFB(k, ipm) before you consider
the case of a general n.)

(c) Assume that the impurity potential U(r) is very short-ranged, so that its Fourier trans-
form U(k) can be approximated to be independent of k, i.e. set U(k) ≡ U for all k. Show
that in this case, ΣFB(k, ipm) is given by

ΣFB(k, ipm) =
NU

1− U
∑

k1
G(0)(k1, ipm)

≡ ΣFB(ipm). (2)

(d) In the lectures we found that for a very short-ranged impurity potential, the second
diagram in Σ1B and ΣFB in the figures above is given by

− i

2τ1B
sgn(pm) where

1

τ1B
= 2πnimpu

2D(0). (3)

(In the lectures τ1B was just called τ .) Here u = UΩ and D(0) is a density-of-states factor
whose precise definition is unimportant here. Use the result (3) to show that

Im ΣFB(ipm) = − 1

2τFB
sgn(pm) (4)

and give an expression for the parameter τFB.

(e) Determine the spectral function Ā(k, ω) ≡ −(1/π)ImGR(k, ω) where GR(k, ω) is the
impurity-averaged retarded Green function. Express its maximum value and its width at
half the maximum in terms of τFB, and show that it satisfies the sum rule

∫∞
−∞ dω Ā(k, ω) = 1.

2. An alternative perturbation expansion for the Green function for the impurity
scattering problem.

(In order to simplify the notation, we will in this problem not explicitly write the wavevector
and Matsubara frequency that various Green functions and self-energy diagrams depend on.
So instead of G(0)(k, ipm) we simply write G(0), and similarly for other quantities.)

The self-energy Σ is the sum of all self-energy diagrams. Let Σ(1) be the self-energy diagram
with a single impurity cross and a single interaction line, as shown in Fig. 1.
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Figure 1: The self-energy diagram Σ(1).

Define Σ′ to be the sum of all the other self-energy diagrams. Thus

Σ = Σ(1) + Σ′. (5)

The self-energy diagrams that make up Σ′ fall into two different classes. One class consists
of those diagrams that contain no factors of Σ(1). Let us call such diagrams bare diagrams.
The other class consists of those diagrams that contain at least one factor of Σ(1). Let us call
such diagrams tree diagrams. We choose the names ”bare” and ”tree” because each Σ(1)

resembles a tree (see Fig. 4 below); a diagram with no trees is bare. The process of changing
a self-energy diagram by “planting a tree” corresponds to replacing a G(0) with G(0)Σ(1)G(0)
(with identical wavevectors for the G(0)’s in both expressions). This is illustrated in Fig. 2.
Thus the diagrams before and after the replacement differ by a factor Σ(1)G(0).

Figure 2: The replacement process involved in “planting a tree”. Left figure: Before the
planting. Right figure: After the planting.

By taking a tree diagram and removing all factors of Σ(1)G(0) we get a bare diagram. Thus
to any tree diagram we can associate a unique bare diagram. Conversely, any tree diagram
can be “generated” by starting from its associated bare diagram and inserting factors of
Σ(1)G(0). These things are probably best understood diagrammatically: see Figs. 3 and 4.

In the following we use the subscript α to label bare self-energy diagrams. Consider an
arbitrary bare self-energy diagram Σ(α).

Figure 3: An example of a “bare” self-energy diagram.
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Figure 4: A few of the “tree” self-energy diagrams that can be generated from the bare
diagram in Fig. 3 by inserting factors of Σ(1)G(0).

Define

Σ̃(α) = Σ(α) + the sum of all tree self-energy diagrams that

can be generated from Σ(α) by “planting trees”. (6)

(a) Show that the mathematical expression for Σ̃(α) can be obtained from the mathematical
expression of the bare diagram Σ(α) by replacing every G(0) in that expression by another

Green function G̃(0) given by

G̃(0) =
1

(G(0))−1 − Σ(1)
. (7)

(b) Show that

Σ′ = Σ̃ (8)

where
Σ̃ ≡

∑
α

Σ̃(α). (9)

(c) Show that Ḡ can be expressed in terms of G̃(0) and Σ̃ as

Ḡ =
1

(G̃0)−1 − Σ̃
. (10)

(d) Next, observe that Eq. (10) can be interpreted as the result of summing an alternative

perturbation expansion for Ḡ in which G̃(0) plays the role of an unperturbed Green function
and the self-energy diagrams are the Σ̃(α)’s. We can represent each term in this expansion as

a Feynman diagram. We represent G̃(0) diagrammatically by a thick full line. Furthermore,
given the result of (a), the diagram for Σ̃(α) is obtained from that for Σ(α) by replacing the

thin electron lines (G(0)) by thick ones (G̃(0)). An example of a Feynman diagram in this
expansion is shown in Fig. 5.

Draw all Feynman diagrams in this alternative perturbation expansion for Ḡ up to and in-
cluding order n = 4 in the electron-impurity scattering potential U(q). (You don’t need to
write the wavevectors for the various lines.) What would you consider to be an advantage
of this expansion compared to the original one discussed in the lectures?
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Figure 5: Example of Feynman diagram in the alternative perturbation expansion.

3. Current density operators and linear response description of coupling a
system of electrons to an external electric field.

This problem deals with the proof of some results that were stated and used in the discussion
in the lecture notes leading up to the proof of the Kubo formula for the electric conductivity
[more specifically, the relevant equations in the lecture notes are Eqs. (170)-(177)].

(a) The current density operator can be written j(r) = jP (r) + jD(r) where, in first quan-
tization,

jP (r) = − ie

2m

∑
i

[∇iδ(r − ri) + δ(r − ri)∇i], (11)

jD(r) = −e
2

m

∑
i

A(ri)δ(r − ri). (12)

Show that the second-quantized expressions for these operators are

jP (r) = − ie

2m

∑
σ

(
ψ†σ(r)∇ψσ(r)− [∇ψ†σ(r)]ψσ(r)

)
, (13)

jD(r) = −e
2

m
A(r)

∑
σ

ψ†σ(r)ψσ(r), (14)

where ψ†σ(r) and ψσ(r) respectively create and annihilate an electron with spin projection
σ at position r.

(b) The vector potential enters the Hamiltonian through the term which in first quantization
reads ∑

i

1

2m
(−i∇i − eA(ri))

2. (15)

Show that the corresponding expression in second quantization can be written

1

2m

∑
σ

∫
dr ψ†σ(r)(−i∇− eA(r))2ψσ(r). (16)

(c) The linear response coupling Hext can be extracted as the part of (16) that is linear in
A. Show that this gives

Hext = −
∫
drjP (r) ·A(r). (17)

5


