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Problem 1.

A sphere of radius R and with zero net charge is placed in a uniform external electric field
of magnitude Fy. The entire sphere, including its interior, is made of perfectly conducting
material, and outside the sphere is vacuum. We choose a coordinate system (see Fig. 1) with
the origin at the center of the sphere and the z axis pointing in the direction of the external
electric field, which thus can be written Ey = EyZz.

Z

Figure 1

a) What is the electric field inside the conducting sphere?

b) What are the boundary conditions for the potential V' (7) (i) on the surface of the sphere
(lr] = R), (ii) as |r| = oo?

In the following we wish to find the potential V(r) at an arbitrary point r (with spherical
coordinates (1,0, ¢)) outside the sphere. Due to the symmetry of the problem, V(r) will be
independent of ¢ and can be expanded as

Vir)= Z (Ag rt+ :Zfl) Py(cosb) (1)

where Py(z) is the Legendre polynomial of degree ¢ in the variable z = cosf (in particular,
Py(z) =1, Pi(x) = z).

c) Show that the potential outside the sphere can be expressed as
By
V(r) = Ay + 7 + C(r) cos 0, (2)

and give the expression for the function C(r).
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d) Find an expression for the surface charge density o on the sphere. Use the fact that the
sphere has zero net charge to show that By = 0.

e) Calculate the induced electric dipole moment p = [ dr rp(r) of the sphere. [Hint: By
symmetry, p must point along the z axis, so it is sufficient to calculate p,. Use the fact
that the induced charge is located at the surface to first rewrite the integral as a surface
integral involving the surface charge density o.]

Problem 2.

Consider Maxwell’s equations in a linear non-conducting medium with permittivity e and
permeability p, and no free charges or currents (pf = Jr = 0).

a) Show that E and B each satisfy the wave equation, and find an expression for the wave
velocity v.

b) Consider the plane wave solution

E — Eoei(k-r—wt)’ B _ Boei(k"r—wt)’ (3)
of the wave equations for E and B, where w = vk. Show the following properties of
these plane waves:

e F and B are in phase
e the directions of Ey, By, and k form a right-handed coordinate system

e |[B|=|E|/v
How does the intensity of the electromagnetic wave depend on Ey? Explain your rea-
soning.
x
interface (z = 0)
k; /
>
/a)
© z
y
medium 1 medium 2
Figure 2

Next, consider two linear non-conducting media 1 and 2 with wave velocities v; and wo,
respectively. The two media are separated by a flat interface. A plane electromagnetic wave
in medium 1 is incident on the interface, giving rise to a reflected wave in medium 1 and a
transmitted wave in medium 2. The wavevector of the incident wave is perpendicular to the
interface (i.e., we are considering "normal incidence”).
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We choose a coordinate system such that the interface is the xzy plane (i.e., at z = 0), with
medium 1 in the region z < 0 and medium 2 in the region z > 0. The incident wave has
(angular) frequency w and wavevector k; = k1Z where k1 > 0 (see Fig. 2). Taking the
incident wave to be polarized along the z direction, the electric and magnetic fields of the
incident wave can be written

- - ) - 1 -~ )
Er(z,t) = Egp ™50 & and Bf(z,t):aEOIe“klZ*wﬂ 9. (4)

c) Write down the expressions for E and B analogous to Eq. (4) for (i) the reflected wave
(ii) the transmitted wave. [You may assume without proof that also these waves are
polarized along the z direction.]

d) Find an expression for the reflection coefficient R (the ratio of the reflected and incident
intensities) in terms of the permittivities and permeabilities of the two media (i.e., €1,

M1, €2, Hz)-

Problem 3.

In the Lorenz gauge, the scalar and vector potentials can be expressed as

V(r,t)= 1/d37«/ﬂ(’°/7tr) A(r,t) = ”O/d%/‘w (5)

- 4re r—7'|’ Ar r—7|

One calls these the retarded potentials, because the time t,., known as the retarded time,
appears in the integrands.

a) Give the mathematical expression for the retarded time ¢,, and use this to give a physical
interpretation of how the charges and currents contribute to the potentials, as expressed

by Eq. (5).

In the following we consider a straight, infinitely long wire. At time t = 0 a constant current
Iy is abruptly turned on in the wire, so that the wire current I(¢) can be written

0 fort<O,
) = { Iy fort>0. (6)

We wish to find the resulting electric and magnetic fields at an arbitrary time ¢t > 0 at an
arbitrary point r outside the wire.

Because of the symmetry of the problem, we choose a cylindrical coordinate system in which
r has coordinates (s, ¢, z), and the z axis is chosen to coincide with the wire, with the z
direction being the direction of the current (see Fig. 3).

b) What is the scalar potential V(r,t) in this problem? Explain your reasoning.

c) Show that the vector potential becomes A(r,t) = A,(r,t) 2, with

0 for t < s/c,
A(rt) =9 gl <t+<t>—) for t > s/c. (7)
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d)

V4

Iy

Figure 3

[Hint: Because of the symmetry of the problem, there can be no dependence on the z
coordinate of 7, so you may set z = 0 for convenience. For ¢t > s/c, first argue that only
a finite segment of the wire will contribute to the integral, and use this to determine
the integration limits for z’.]

Find the electric field E(r,t) and the magnetic field B(r,t). (Using the cylindrical
coordinate system is again recommended.)

Consider the expressions for E(r,t) and B(r,t) in the limit ¢ — co. Are the results
reasonable? Explain.
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Formulas

Some formulas that you may or may not need (you should know the meaning of the symbols
and possible limitations of validity):

1
2
Py(x) Py = /

| doP@Puta) = g (s)

oV oV
cTTa |:6n outside B % inside:| (9)

2y 10°f

Vi = v2 Ot2 (10)

D =Dy, Bl =By, E/-E) H|-H) (11)



FUNDAMENTAL CONSTANTS

e = 8.85x10712C2/Nm? (permittivity of free space)
o = 4m x 107N /A2 (permeability of free space)
c = 3.00x108m/s (speed of light)

e = 160x1071°C (charge of the electron)

m = 9.11x10 3 kg (mass of the electron)

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical
[ x = rsinfcos¢ % = sinfcos¢r +cosbcosgh —sin ¢
{ y = rsinfsing 1y = sinesin¢f'+cos€sin¢é—|—cos¢$
| 2 = rcost | 2 cosOF —sin6
[ r = X242+ 22 [ F = sinfcos¢X+sinfsingy+ cosfZ
160 = tan1(V/x2+y2/2) 6 = cosOcosgk+cosfsing§y — sin 62
¢ = tan~!(y/x) | ¢ = —singR+cosgy
Cylindrical
[ x = scos¢ % = cosp§—singe
{ y = ssing {§ = sing§+cospe
Z = z Z = 1
s = JxZ4y? [ § = cos@ X +sin ¢ ¥
{ ¢ = tan~l(y/x) 1 ¢ = —singk+cosgy
lz = 2 i = 1




BASIC EQUATIONS OF ELECTRODYNAMICS

Maxwell’s Equations

In general - In matter :
1 .
V.E=— V.-D=pf
€0
B
V xE = _98 VXE= ot
< 1 4 i
V.B=0 V.-B=0
oD
oE VxH-= -
L VXB=M0J+M0€0¥ X Jf+8t
Aucxiliary Fields
Definitions - Linear media :
D =¢E+P P=¢yx.E, D=¢cE
1 1
H=—B-M M=y,H, H=-B
Ko (23
Potentials
0A
E=-VV - —, B=VxA
ot
Lorentz force law
F=gE+vxB)
Energy, Momentum, and Power
1 2, 1 »
Energy : U=~ e+ —B° ) dr
2 Ho

Momentum : P=¢) [(ExB)dr

1
Poynting vector : S = —(E x B)
Mo

Larmor formula: P = ﬂqza2
bre



VECTOR IDENTITIES

Triple Products
(1) A-BxC)=B-(CxA)=C-(AxB)
2) AxBxC)=BA -C)—-C(A-B)
Product Rules
(3 V(fe)=f(Vg)+g(Vf)
(4) VAA-B)=Ax(VxB)+Bx (VxA)+A-V)B+B-V)A
5) V-(fA=f(V-A)+A-(V))
(6) V-AxB)=B-(VxA)—A (VxB)
(7)) Vx(fA)=f(VxA)-Ax (V)
() VX(AxB)=B-V)A—(A-V)B+A(V-B)—B(V-A)

Second Derivatives

9 V- (VxA)=0
(10) Vx(Vf)=0

(11) Vx (VXA =V(V.A)—-V2A

FUNDAMENTAL THEOREMS

Gradient Theorem :  [P(Vf)-dl = f(b) — f(a)
Divergence Theorem : [(V-A)dr = A -da

Curl Theorem : J(VxA)-da=¢A- dl




VECTOR DERIVATIVES

Cartesian. dl=dxx+dyy+dzi; drv=dxdyd:
Gradient Vi azAJraz +azA
radient : hid
0x ay y 07
0 0
Divergence: V -v 3_1)1 + oy + 4
0x ay 0z
d d dv, 0 R 0 0 R
Curl : Vxv vz %Y PO A 1 3+ 9y _ 9V 5
ay 0z 0z ox ax ay
: ) 7%t 3t %
Laplacian : Vet

Spherical. dl =

a2 Ty T a2

drt+rdfb+rsinfdpd; dr =risinfdrddde

: ot ., 10t 1
Gradient : \%3 —r+-—0+ ¢
ar r 06 rsinf 3¢
Di v ) o (sinf up) o8
vergence . -V - — v — — (81 —_—
rvers Zars U noa6 T ing 3¢
1 )
Curl : V xv , (sm9 Vp) — 2% |
rsinf | 06 8q§
1T 1 8o, a( )0.+1 a( ) av,¢
— —— — — — v — JR— — —
| smeag ol rlars "7 B
19 [ ,0 1 9 at 1 8%
Laplacian : V2t —— 0— )+ ————
practan 72 ar ( ar) t Zsine 50 (Sm ae) t nZe 92
Cylindrical. dl=ds$+sdpd +dz%; dr =sdsdedz
. ot . 1ot . at R
Gradient : Vi —S+ - z
as s8¢
Di v.ov 1 a( L4 13vy By,
vergence . . ——{SV
& s as s s d¢
19 dvy]. [0 dv,1~ 18 dvs ] .
Curl: vy = [0 _ By fou dulg 170 du],
s 0¢ 0z 0z as s [ 0s ¢
19 ([ ot 1 8% 32
. . 2
Laplacian : Vet P (sa) 2392 T a2





