








Problem 5

(a) The potential is, for |r| ≥ R,

V (r) =
1

4πε0

[
q

|r − aẑ|
+

q′

|r − bẑ|

]
. (1)

The boundary condition (BC) is V (r) = 0 for all r with |r| = R. To find the two unknowns q′ and b,
we can consider the BC for two special cases, say r = ±Rẑ. This gives

for r = +Rẑ :
q

|R− a|
+

q′

|R− b|
= 0 ⇒ q′ = −R− b

a−R
q, (2)

for r = −Rẑ :
q

| −R− a|
+

q′

| −R− b|
= 0 ⇒ q′ = −R+ b

R+ a
q. (3)

where we used that a > R and b < R. Equating the two expressions for q′ gives

(R+ a)(R− b) = (R+ b)(a−R) ⇒ 2R2 = 2ab ⇒ b =
R2

a
. (4)

Inserting this result for b into one of the equations for q′, say Eq. (3), gives

q′ = −R+R2/a

R+ a
q = −R

a
· 1 +R/a

R/a+ 1
q = −R

a
q. (5)

We should now check whether this solution for q′ and b also satisfies the BC’s for the general case
|r| = R (after all, while getting a solution to our set of two linear equations (2)-(3) in two unknowns was
mathematically guaranteed, it is a priori not obvious that we would get the same solution regardless of
which two special points on the spherical surface we selected). To this end, let us write

|r − cẑ| =
√

(r − cẑ) · (r − cẑ) =
√
r2 − 2cr · ẑ + c2 =

√
r2 − 2rc cos θ + c2. (6)

Using this result, the second term inside the square brackets in (1) becomes, for |r| = R,

−qR/a√
R2 − 2R · (R2/a) cos θ + (R2/a)2

= − q√
R2 − 2Ra cos θ + a2

, (7)

which is the negative of the first term, confirming the BC for an arbitrary point on the spherical surface.

(b) The surface charge density σ is given by

σ = −ε0

[
∂V

∂n

∣∣∣∣∣
outside

− ∂V

∂n

∣∣∣∣∣
inside

]
= −ε0

∂V

∂n

∣∣∣∣∣
outside

. (8)

Here ”outside” (”inside”) refer to evaluating the derivatives just outside (inside) the spherical surface.
The ”inside” term vanishes since the sphere is a conductor and thus an equipotential in electrostatics.
Since the surface normal has the same direction as r̂, it follows that ∂/∂n = ∂/∂r. Thus

σ = − 1

4π

∂

∂r

[
q√

r2 − 2ra cos θ + a2
+

q′√
r2 − 2rb cos θ + b2

] ∣∣∣∣∣
r=R

=
1

4πε0

[
q(R− a cos θ)

(R2 − 2Ra cos θ + a2)3/2
+

q′(R− b cos θ)

(R2 − 2Rb cos θ + b2)3/2

]
=

q

4π

R2 − a2

R(R2 + a2 − 2Ra cos θ)3/2
. (9)

As is reasonable, this expression for σ has the opposite sign of q and its magnitude decreases with θ.
Also, its dimension is [charge]/[length]2, as it should be (it is good to make such checks).
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The total charge of the entire system (point charge + sphere) is q + Q ≡ Qtot. Here, Qtot is also the
charge appearing in the monopole term Qtot/4πε0r in the multipole expansion of the potential. From
(1) one can see that the monopole term is (q + q′)/4πε0r, so Qtot = q + q′, giving

Q = Qtot − q = (q + q′)− q = q′. (10)

Alternatively, Q can be found by integrating the surface charge density σ over the spherical surface:

Q =

∫
σda = R2

∫ 2π

0

dϕ

∫ π

0

dθ sin θ σ =
qR(R2 − a2)

2

∫ 1

−1

dx

(R2 + a2 − 2Rax)3/2
(11)

(here the ϕ-integral just gave a factor 2π and we changed integration variables from θ to x = cos θ).

The integral is
∫ 1

−1 dx (C +Dx)−3/2 with constants C = R2 − a2 and D = −2Ra. Changing integration
variable to u = C +Dx, the integral becomes

1

D

∫ C+D

C−D
duu−3/2 =

1

D
· 1

−3/2 + 1
u−3/2+1

∣∣∣∣∣
C+D

C−D

= − 2

D

[
1√

C +D
− 1√

C −D

]
. (12)

Using
√
C ±D =

√
R2 + a2 ∓ 2Ra =

√
(R∓ a)2 = a∓R, we get

Q =
qR(R2 − a2)

2
· (−2)

(−2Ra)

[
1

a−R
− 1

a+R

]
︸ ︷︷ ︸

2R/(a2−R2)

= −qR
a

= q′. (13)

(c) Call the second image charge q′′. Since q and q′ together make V = 0 at r = R, the job of q′′ is to
raise the potential from 0 to V0 at r = R. Since all points with |r| = R should be raised by the same
value V0, q′′ must be positioned equally far away from all these points, and therefore it must be placed at
the origin r = 0. Its potential at r = R is therefore q′′/4πε0R. This should equal V0, so q′′ = 4πε0RV0.
The potential outside the sphere is V (r) = (4πε0)−1(q/|r − aẑ|+ q′/|r − bẑ|+ q′′/|r|).
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