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Problem 1.
See handwritten solution further back.

Problem 2.
See handwritten solution further back.

Problem 3.

a) The magnetic field is related to the vector potential by

B(r) =∇×A(r). (1)

In order to do the partial derivatives more conveniently we first rewrite A(r) as

A(r) =
µ0
4π

m× r

r3
. (2)

In component form we therefore get

Bi(r) = εijk∂jAk(r)

=
µ0
4π
εijk∂j

(
εklm

mlrm
r3

)
=

µ0
4π
εkijεklmml ∂j

(rm
r3

)
=

µ0
4π
εkijεklmml

(
1

r3
∂jrm + rm ·

(−3)

r4
∂jr

)
(3)

where we used εijk = εkij . Now we use

∂jrm = δjm, (4)

∂jr = ∂j
√
rmrm =

1

2r
2rmδjm =

rj
r
, (5)

which gives, upon also using εkijεklm = δilδjm − δimδjl,

Bi(r) =
µ0
4π

1

r3
εkijεklmml

(
δjm − 3

rjrm
r2

)
=

µ0
4π

1

r3
(δilδjm − δimδjl)ml

(
δjm − 3

rjrm
r2

)
. (6)

Doing first the summations over l and m, and in the subsequent line the sum over j
(using δjj = 3 and rjrj = r2) gives

Bi(r) =
µ0
4π

1

r3

[
mi

(
δjj − 3

rjrj
r2

)
−mj

(
δji − 3

rjri
r2

)]
=

µ0
4π

1

r3

[
mi

(
3− 3

r2

r2

)
−mi + 3

(m · r)ri
r2

]
=

µ0
4π

1

r3

[
3

(m · r)ri
r2

−mi

]
. (7)
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Thus, going back to the vector form,

B(r) =
µ0
4π

1

r3

[
3

(m · r)r

r2
−m

]
=
µ0
4π

1

r3
[3(m · r̂)r̂ −m]. (8)

b) Equation (8) is identical in form to the expression for the electric field of a pure electric
dipole under the substitutions E → B, p→m, and 1/ε0 → µ0.

Problem 4.
See handwritten solution further back.

Problem 5.
See Griffiths.














