TFY4240 Problem set 7

Institutt for

fysikk

Problem 1.

In the lectures I stated without proof that the integral of the magnetization M over the total volume Ω of a sample of magnetic material equals the total magnetic moment m of the sample:

$$\boldsymbol{m} = \int_{\Omega} d^3 r \; \boldsymbol{M}(\boldsymbol{r}). \tag{1}$$

The purpose of this problem is to prove (1).

a) By applying the divergence theorem $\int_{\Omega} d^3 r \, \nabla \cdot \boldsymbol{v} = \int_a d\boldsymbol{a} \cdot \boldsymbol{v}$ to the case $\boldsymbol{v}(\boldsymbol{r}) = f(\boldsymbol{r})\boldsymbol{c}$, where \boldsymbol{c} is a constant vector, show that

$$\int_{\Omega} d^3 r \,\nabla f = \int_a da f. \tag{2}$$

This result will be used later.

We start from the definition of the magnetic moment m due to a current density j:

$$\boldsymbol{m} = \frac{1}{2} \int d^3 r \; \boldsymbol{r} \times \boldsymbol{j}(\boldsymbol{r}). \tag{3}$$

Applying this to the bound currents of a sample of material, and separating the contributions from the volume and surface of the sample, with associated bound volume current density $\nabla \times \mathbf{M}$ and bound surface current density $\mathbf{M} \times \hat{\mathbf{n}}$, gives

$$\boldsymbol{m} = \frac{1}{2} \int_{\Omega} d^3 \boldsymbol{r} \, \boldsymbol{r} \times (\nabla \times \boldsymbol{M}) + \frac{1}{2} \int_{a} da \, \boldsymbol{r} \times (\boldsymbol{M} \times \hat{\boldsymbol{n}}).$$
(4)

b) Consider the *i*'th component m_i . Express the components of the cross products using the Levi-Civita symbol, and use the identity $\epsilon_{kij}\epsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$ to show that

$$m_{i} = \frac{1}{2} \int_{\Omega} d^{3}r \, \left[r_{j} \partial_{i} M_{j} - r_{j} \partial_{j} M_{i} \right] + \frac{1}{2} \int_{a} da \left[r_{j} M_{i} \hat{n}_{j} - r_{j} M_{j} \hat{n}_{i} \right].$$
(5)

c) Use the identity $\partial_k(AB) = A \partial_k B + B \partial_k A$ to rewrite each term in the volume integral. Next, show that the resulting volume integrals of the total derivative terms $\partial_k(AB)$ cancel the surface integrals in (5) (to show this cancellation, invoke the result (2) componentwise). Finally, simplify the remaining volume integral terms to show that $m_i = \int_{\Omega} d^3 r M_i$, which concludes the proof.

TFY4240 Problem set 7

Problem 2.

(This is essentially Problem 6.12 in Griffiths, slightly rewritten and with a hint.) An infinitely long cylinder, of radius R, has a "frozen-in" magnetization M parallel to the cylinder axis (taken to be the \hat{z} axis) given by

$$\boldsymbol{M} = ks\hat{\boldsymbol{z}},\tag{6}$$

where k is a constant and s is the distance from the z axis. There is no free current anywhere. Find the magnetic field inside and outside the cylinder by two different methods:

- a) First calculate the bound current densities, and then calculate the total magnetic field they produce. [Hint: After you have found the bound current densities, argue that the bound currents in this problem can be regarded as making up a continuous set of concentric, infinitely long solenoids with different radii. Then use the known results for the magnetic field due to a solenoid (see e.g. Ex. 5.9 in Griffiths) to calculate the magnetic field from the bound currents.]
- **b)** First find H, and then find B.

You should find the second method considerably easier than the first.

Problem 3.

Go through Examples 7.2, 7.4, and 7.9 in Griffiths.

Problem 4.

(This is a slightly rewritten version of problem 7.8 in Griffiths.) A square loop of wire with side length L lies on a table, a distance ℓ from an infinitely long straight wire which carries a constant current I.

- a) Find the magnetic flux through the loop.
- b) What is the emf generated if the loop is pulled at constant speed v directly away from the wire? What is the direction of the induced current?
- c) Same questions as in (b), except that the loop is now pulled to the right, i.e. the velocity is parallel to the wire.

TFY4240 Problem set 7

Problem 5.

Let \boldsymbol{v} be a general vector and let $\stackrel{\leftrightarrow}{T}$ be a general tensor of rank 2. In terms of the basis vectors $\hat{\boldsymbol{x}}_i$ (i = 1, 2, 3), one can write

$$egin{array}{rcl} m{v} &=& v_i \hat{m{x}}_i, \ ec{T} &=& T_{ij} \hat{m{x}}_i \hat{m{x}}_j \end{array}$$

where $\hat{\boldsymbol{x}}_i \hat{\boldsymbol{x}}_j \equiv \hat{\boldsymbol{x}}_i \otimes \hat{\boldsymbol{x}}_j$.

- **a)** Determine the components of $\nabla \cdot \overleftarrow{T}$.
- **b)** In addition to the dot product (·) between a vector and a rank-2 tensor, one can also define a cross product (×) between a vector and a rank-2 tensor. Like the dot product, the cross product is noncommutative. Unlike the dot product, whose result is a vector, the cross product gives another rank-2 tensor. The cross products $\stackrel{\leftrightarrow}{T} \times \boldsymbol{v}$ and $\boldsymbol{v} \times \stackrel{\leftrightarrow}{T}$ can be evaluated term by term using the definitions

$$egin{array}{rcl} (\hat{m{x}}_i \hat{m{x}}_j) imes \hat{m{x}}_k &\equiv& \hat{m{x}}_i (\hat{m{x}}_j imes \hat{m{x}}_k), \ \hat{m{x}}_k imes (\hat{m{x}}_i \hat{m{x}}_j) &\equiv& (\hat{m{x}}_k imes \hat{m{x}}_i) \hat{m{x}}_j. \end{array}$$

Use these to find expressions for the components of $\overset{\leftrightarrow}{T} \times \boldsymbol{v}$ and $\boldsymbol{v} \times \overset{\leftrightarrow}{T}$. (The result $\hat{\boldsymbol{x}}_i \times \hat{\boldsymbol{x}}_j = \varepsilon_{ijk} \hat{\boldsymbol{x}}_k$ may be useful.)