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Problem 1.
Consider a TEmn mode propagating down a hollow metallic waveguide of rectangular cross
section, as discussed in the lectures and Griffiths (Secs. 9.5.1 and 9.5.2). We want to calculate
the “energy velocity” vE , which is the velocity at which energy is transported down the
waveguide. This can be defined as

vE =

∫
da 〈S〉 · ẑ∫
da 〈u〉

(1)

where 〈S〉 and 〈u〉 are the time-averaged Poynting vector and energy density of the wave,
respectively, and the integral is over the rectangular cross section. The definition (1) is the
natural generalization of the result v = |〈S〉|/〈u〉 found for the propagation of an EM plane
wave in a linear dielectric (including the vacuum with v = c). In that case v = vp = vg, i.e.
the phase and group velocities coincide, due to the relation ω(k) = vk. That is no longer
the case for the waveguide, for which the confinement instead leads to ω(k) =

√
(ck)2 + ω2

nm,
giving vp > c and vg < c. Also note that the reason why the integrals

∫
da . . . are needed in

(1) is because in the waveguide the confinement makes the integrands depend on the trans-
verse coordinates x and y, unlike the case for a plane wave propagating in an infinite dielectric.

The goal of this problem is to show that for the waveguide, vE = vg. In the calculations it
will be convenient to use the complex notation discussed in Problem 9.11 in Griffiths.

a) Show that ∫
da 〈u〉 =

1

2µ0

(ω/c)2

(ω/c)2 − k2

∫
da|bz|2, (2)

where bz (called Bz by Griffiths) is the z-component of the complex amplitude of B̃.
Hint: Separate 〈u〉 into transverse (x, y) and longitudinal (z) contributions. Use Eqs.
(9.180) in Griffiths to rewrite everything in terms of bz and its derivatives. Use integra-
tion by parts, the boundary condition B⊥ = 0, and the wave equation for bz to show
that ∫

da (∇⊥bz) · (∇⊥b∗z) = −
∫
da b∗z∇2

⊥bz = [(ω/c)2 − k2]
∫
da |bz|2 (3)

where ∇⊥ ≡ x̂∂x + ŷ∂y.

b) Show that ∫
da 〈S〉 · ẑ =

1

2µ0

ωk

(ω/c)2 − k2

∫
da |bz|2. (4)

c) Find the energy velocity vE and show that it equals the group velocity vg.
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Problem 2.
In the lectures we considered the Green function for the Laplacian ∇2 in an infinite volume,
defined by the differential equation1

∇2G(r, r′) = −δ(r − r′) (5)

and the boundary condition

G(r, r′)→ 0 as |r| → ∞ (for an arbitrary fixed r′). (6)

We used the fact that

∇2 1

|r − r′|
= −4πδ(r − r′) (7)

to deduce that

G(r, r′) =
1

4π|r − r′|
. (8)

You may have found this “derivation” somewhat unsatisfactory since it required knowledge
of the result (7); what if we hadn’t known this beforehand? In this problem we therefore
consider an alternative way of deriving (8).

a) Show that (5) can be rewritten as

∇2
RG = −δ(R) (9)

where R = r − r′ and ∇R ≡ x̂i
∂

∂Ri
. Thus we see that G is a function of r and r′ only

via the combination R, so we write G = G(R). The boundary condition (6) can then
be rewritten as

G(R)→ 0 as |R| → ∞. (10)

b) We will find G(R) by the method of Fourier transformation. To this end, we express
G(R) as

G(R) =
1

(2π)3

∫
d3k g(k)eik·R. (11)

By also making use of the Fourier transform of δ(R), show that

g(k) =
1

k2
. (12)

c) Use this to show that

G(R) =
1

4πR
, (13)

which thus gives the result (8).

1Here δ(r−r′) is the Dirac delta function in 3 dimensions, defined as δ(r−r′) = δ(x−x′)δ(y−y′)δ(z−z′).
Note that we are here using the same name (δ) about two different functions (both the 1-dimensional and
3-dimensional delta function). Strictly speaking this is dubious notation (it would have been more appropriate
to define the 3-dimensional delta function as δ3(r − r′), as is sometimes done), but this convention of letting
the argument(s) tell us which function is meant is rather common in physics.
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Problem 3.
In this problem we will use Fourier transformation (and contour integration) to calculate the
Green function for the d’Alembertian, which satisfies the differential equation[

∇2 − 1

c2
∂2

∂t2

]
G(r, t; r′, t′) = −δ(r − r′)δ(t− t′), (14)

which by a change of variables to R = r − r′ and T = t− t′ can be rewritten as[
∇2

R −
1

c2
∂2

∂T 2

]
G = −δ(R)δ(T ), (15)

so G is a function of r, r′, t and t′ only through the combinations R and T . We therefore
write G = G(R, T ).

a) By expressing G in terms of its Fourier transform,

G(R, T ) =
1

(2π)4

∫
d3k

∫
dω g(k, ω)ei(k·R−ωt) (16)

and also using the Fourier transform of the delta functions, show that

g(k, ω) =
1

k2 − (ω/c)2
. (17)

b) Viewed as a function of ω, g(k, ω) has simple poles at ω = ±kc. When doing the inverse
Fourier transform to find G(R, T ), the answer will depend on how we integrate around
those singularities. Here we are interested in the retarded Green function which sat-
isfies G = 0 for T < 0. This condition will be satisfied if the integration path passes
above the singularities (this is accomplished by replacing ω → ω + iη where η is a real
positive infinitesimal, as this pushes the poles slightly below the real axis, so that by
integrating along the real axis the integration path passes above the poles).

Use contour integration (the residue theorem) to show that the procedure just described
indeed gives G = 0 for T < 0.

c) Use the same method to calculate G for T > 0. Show that this gives the result

G(R, T ) =
1

4πR
δ(T −R/c). (18)

In terms of the original variables, the retarded Green function is therefore

G(r, t; r′, t′) =
1

4π|r − r′|
δ(t− t′ − |r − r′|/c), (19)

as also shown in the lectures using a completely different approach.
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Problem 4.
The scalar and vector potentials in the Lorenz gauge are given by

V (r, t) =
1

4πε0

∫
d3r′

ρ(r′, tr)

R
, (20)

A(r, t) =
µ0
4π

∫
d3r′

J(r′, tr)

R
, (21)

(22)

where R = |r − r′| and tr = t − R/c is the retarded time. Verify that expressions (20)-(21)
satisfy the Lorenz gauge condition

∇ ·A +
1

c2
∂V

∂t
= 0. (23)

(This is Problem 10.8 in Griffiths. See the hint given there.)


