
Transformations and symmetries
in quantum mechanics

These notes give a brief and basic introduction to some central aspects concerning transfor-
mations and symmetries in quantum mechanics. Examples discussed include translations in
space and time, as well as rotations.

Example 1: Translations in space

Translations in space are also called spatial translations, and sometimes even just “transla-
tions” for short, with “spatial” left implicit. To introduce the concept, let us consider the
simplest example of a single particle in one spatial dimension. The state |x〉 is the eigenstate
of the position operator x̂ with eigenvalue x:

x̂|x〉 = x|x〉. (1)

The eigenstates of x̂ obey 〈x|x′〉 = δ(x − x′). Now consider the state exp(−ip̂x∆x/~)|x〉,
where p̂x is the momentum operator and ∆x is some arbitrary spatial displacement. As the
commutator [x̂, p̂x] = i~ is just a c-number, the simplified version (39) of the Baker-Hausdorff
theorem holds, which gives

x̂ exp (−ip̂x∆x/~)|x〉 = exp (−ip̂x∆x/~) exp (+ip̂x∆x/~)x̂ exp (−ip̂x∆x/~)︸ ︷︷ ︸
x̂+∆x

|x〉

= exp (−ip̂x∆x/~)(x+ ∆x)|x〉 = (x+ ∆x) exp (−ip̂x∆x/~)|x〉. (2)

This shows that exp (−ip̂x∆x/~)|x〉 is an eigenstate of x̂ with eigenvalue x + ∆x. Also,
because the operator exp(−ip̂x∆x/~) is unitary, the appropriate normalization is preserved:

〈x| exp (+ip̂x∆x/~) exp (−ip̂x∆x/~)︸ ︷︷ ︸
Î

|x′〉 = δ(x− x′) = δ(x−∆x− (x′ −∆x)). (3)

Therefore we conclude that

exp (−ip̂x∆x/~)|x〉 = |x+ ∆x〉. (4)

Thus the operator exp (−ip̂x∆x/~) transforms |x〉 into |x+ ∆x〉, i.e. it effects1 translations
in space by ∆x. If the displacement ∆x is infinitesimal, i.e. ∆x → dx, the operator

1Do not confuse the word effect, used here as a verb, with the verb affect. To effect means to produce,
bring about, accomplish, make happen.
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exp (−ip̂xdx/~) effecting the transformation can be approximated as

exp (−ip̂xdx/~) ≈ 1− i

~
p̂xdx. (5)

The generalization of these results to three dimensions is straightforward since components
of the momentum operator in different directions commute with each other, so translations
along different directions commute. Thus

exp (−ip̂ ·∆r/~)|r〉 = |r + ∆r〉, (6)

where r = (x, y, z), ∆r = (∆x,∆y,∆z), and p̂ = (p̂x, p̂y, p̂z). The generalization of (5)
becomes

exp (−ip̂ · dr/~) ≈ 1− i

~
p̂ · dr. (7)

One says that the momentum operator p̂ is the generator of infinitesimal translations in
space.

Example 2: Translations in time

Translations in time are also sometimes called temporal translations. To study these we
start from the time-dependent Schrödinger equation:

i~
∂|Ψ(t)〉
∂t

= Ĥ|Ψ(t)〉. (8)

We will limit our discussion to systems for which the Hamiltonian Ĥ does not depend
explicitly on time. Then the solution of the Schrödinger equation can be written |Ψ(t)〉 =
exp (−iĤ(t− t′)/~)|Ψ(t′)〉 (you can verify that differentiation of this equation leads back to
(8)). Here exp(−iH(t − t′)/~) is called the time evolution operator. Its unitarity implies
that the norm of the state vector is preserved in time: 〈Ψ(t)|Ψ(t)〉 = 〈Ψ(t′)|Ψ(t′)〉, thus if
the state is normalized at one time it will remain normalized at all times (“conservation of
total probability”). Clearly one can write

exp(−iĤ∆t/~)|Ψ(t)〉 = |Ψ(t+ ∆t)〉, (9)

where ∆t is an arbitrary temporal displacement. In words, exp(−iĤ∆t/~) effects transla-
tions in time by ∆t. An infinitesimal translation by time dt is effected by

exp (−iĤdt/~) ≈ 1− i

~
Ĥdt. (10)

One says that the Hamiltonian operator Ĥ is the generator of infinitesimal translations in
time.
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Unitary transformations. Continuous vs. discrete trans-

formations

Note the similar structure of the results for the transformations discussed so far: Both spatial
and temporal translations are effected by an operator of the form

exp(−iQ̂∆a/~) (11)

where Q̂ is a Hermitian operator (Q̂ is often referred to as a generator in this context) and
∆a is the displacement, which is a real-valued quantity. Thus (11) is a unitary operator, so
it preserves inner products2 and therefore also normalizations. For translations in space, ∆a
is the spatial displacement along some arbitrary direction in space, and Q̂ is the component
of the momentum operator along that direction, while for translations in time, ∆a is the
temporal displacement and Q̂ is the Hamiltonian operator. For infinitesimal translations we
can write

exp(−iQ̂ da/~) ≈ 1− i

~
Q̂da. (12)

Furthermore, using the mathematical identity

ex = lim
N→∞

(
1 +

x

N

)N

, (13)

we see that for both types of transformations one also has the very natural result that a finite
translation can be made by concatenating an infinite number of infinitesimal translations:

exp(−iQ̂∆a/~) = lim
N→∞

(
1− i

~
Q̂

∆a

N

)N

(14)

As will be discussed in the next section, another very important class of transformations,
namely that of rotations, is described by the same theoretical structure. In fact, the struc-
ture discussed here is very general, as almost all transformations in quantum mechanics are
effected by unitary operators. The only exception is the time reversal transformation, which
is effected by an anti -unitary operator. Also note that translations in space (along some
direction) or time, as well as rotations (see the next section), can be carried out for arbitrary
values of the appropriate displacement parameter ∆a, which thus take values in a continuous
set. For this reason such transformations are called continuous. Furthermore, as the contin-
uous set also includes ∆a = 0, which corresponds to the “do-nothing” transformation (i.e.
the identity operator Î), it follows that the set of continuous transformations also includes
infinitesimal transformations, which are described by (12). Infinitesimal transformations do
however not exist for those kinds of transformations which are discrete (as opposed to con-
tinuous), whose displacement parameters can only take values in a discrete set (examples of
discrete transformations include the time reversal and parity transformations).

2In other words, if Û is a unitary operator and |Ψ1〉 and |Ψ2〉 are two arbitrary state vectors, the inner
product of U |Ψ1〉 and U |Ψ2〉 is the same as that of |Ψ1〉 and |Ψ2〉: 〈Ψ1|Û†Û |Ψ2〉 = 〈Ψ1|Ψ2〉.
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Example 3: Rotations

A rotation is specified by a rotation axis and a rotation angle about that axis. Rotations
around a given axis can be regarded as translations of an angular variable; in this limited
sense, rotations are “angular translations”. And like spatial and temporal translations, ro-
tations around the same axis commute with each other. However, rotations around different
axes do not.3

The rotation axis will be specified by the unit vector n pointing in the direction of the axis.
Denoting the rotation angle by ∆φ, we claim that the operator effecting the rotation is

exp (−iĴ · n ∆φ/~), (15)

where Ĵ = (Ĵx, Ĵy, Ĵz) is the angular momentum operator. Thus rotation operators are of the

general form discussed in Sec. with Q̂ = Ĵ · n (i.e. the component of Ĵ along the rotation
axis) and ∆a = ∆φ. One says that the angular momentum operator Ĵ is the generator of
infinitesimal rotations. The components of Ĵ satisfy the angular momentum commutation
relations4

[Jx, Jy] = i~Jz, [Jy, Jz] = i~Jx, [Jz, Jx] = i~Jy. (16)

The noncommutativity of rotations around different axes is related to the noncommutativity
of these generators.

To illustrate that (15) is the operator effecting rotations, let us consider a concrete example:
the rotation by a finite angle ∆φ about the z axis. We will show that the expectation value
of Ĵ transforms as a classical vector under this rotation, which is what one would expect.
Denoting the state before the rotation by |Ψ〉, the rotated state is

exp(−iĴz∆φ/~)|Ψ〉 ≡ |Ψ′〉. (17)

Thus the expectation value of Ĵi (i = x, y, z) in the rotated state is

〈Ψ′|Ĵi|Ψ′〉 = 〈Ψ| exp(iĴz∆φ/~)Ĵi exp(−iĴz∆φ/~)|Ψ〉. (18)

We use the Baker-Hausdorff formula (36) to calculate the operator product here. For i = x

3This is a well-known fact to everyone who has tried to get a big piece of furniture up a narrow non-straight
stairway.

4Also known as the SU(2) commutation relations.
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we get

exp (iĴz∆φ/~)Ĵx exp (−iĴz∆φ/~)

=
∞∑

n=0

1

n!
[Ĵx,−iĴz∆φ/~]n = Ĵx +

(
i∆φ

~

)
[Ĵz, Ĵx]︸ ︷︷ ︸

i~Ĵy

+
1

2!

(
i∆φ

~

)2

[Ĵz, [Ĵz, Ĵx]︸ ︷︷ ︸
i~Ĵy

]

︸ ︷︷ ︸
~2Ĵx

+
1

3!

(
i∆φ

~

)3

[Ĵz, [Ĵz, [Ĵz, Ĵx]]︸ ︷︷ ︸
~2Ĵx

]

︸ ︷︷ ︸
i~3Ĵy

+ · · ·

= Ĵx

(
1− ∆φ2

2!
+ · · ·

)
− Ĵy

(
∆φ− ∆φ3

3!
+ · · ·

)
. (19)

The two series inside the parentheses are the Taylor expansions of cos ∆φ and sin ∆φ, re-
spectively. Thus

exp (iĴz∆φ/~)Ĵx exp (−iĴz∆φ/~) = Ĵx cos ∆φ− Ĵy sin ∆φ. (20)

An entirely analogous calculation shows that

exp (iĴz∆φ/~)Ĵy exp (−iĴz∆φ/~) = Ĵx sin ∆φ+ Ĵy cos ∆φ. (21)

Finally, since exp (±iĴz∆φ/~) commutes with Ĵz it follows immediately that

exp (iĴz∆φ/~)Ĵz exp (−iĴz∆φ/~) = Ĵz. (22)

Introducing the simplified notation 〈Ψ|Ĵi|Ψ〉 ≡ 〈Ĵi〉 and 〈Ψ′|Ĵi|Ψ′〉 ≡ 〈Ĵi〉′, the results above
imply that

〈Ĵx〉′ = 〈Ĵx〉 cos ∆φ− 〈Ĵy〉 sin ∆φ, (23)

〈Ĵy〉′ = 〈Ĵx〉 sin ∆φ+ 〈Ĵy〉 cos ∆φ, (24)

〈Ĵz〉′ = 〈Ĵz〉. (25)

These transformation rules are identical to those for a classical vector being rotated an
angle ∆φ around the z-axis. This illustrates that the expectation value 〈Ĵ〉 of the angular
momentum operator behaves as a classical vector under rotations.

Transformed states vs. transformed operators

(active vs. passive view)

Consider a transformation effected by some unitary operator Û . The transformation changes
a state |Ψ〉 into

|Ψ′〉 = Û |Ψ〉. (26)
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Let us now consider the expectation value of some operator Â in the transformed state:

〈Ψ′|Â|Ψ′〉 = 〈Ψ|Û †ÂÛ |Ψ〉 = 〈Ψ|Â′|Ψ〉, (27)

where we defined
Â′ = Û †ÂÛ . (28)

Thus one can think of the expectation value in (27) in two alternative ways: either as the
expectation value of the original operator Â in the transformed state |Ψ′〉, or as the expecta-
tion value of the transformed operator Â′ in the original state |Ψ〉. The first interpretation,
in which the transformation affects the state, is the active view of the transformation, while
the second interpretation, in which the transformation affects the operator, is the passive
view of the transformation. The two views are completely equivalent mathematically and
neither of them is “more correct” than the other.

Although we did not emphasize it, we have already encountered some examples of trans-
formed operators. From (2) and its generalization to three dimensions it follows that the posi-
tion operator r̂ transforms like a classical vector under spatial translations (r̂ → r̂′ = r̂+∆r).
And (20)-(22) show that the angular momentum operator Ĵ transforms like a classical vector
under rotations, as the lhs’s of these equations are Ĵ ′x, Ĵ ′y, and Ĵ ′z, respectively.

An example of the active vs. passive view is the Schrödinger vs. Heisenberg picture of time
evolution effected by the operator Û(t) = exp(−iĤt/~). In the Schrödinger picture the time
evolution affects the states, not the operators. In the Heisenberg picture it is the other way
around.

Invariants and symmetries

Suppose that the expectation value of an operator Â is invariant under some transformation
effected by a unitary operator Û . That is, for any state |Ψ〉,

〈Ψ|Â|Ψ〉 = 〈Ψ|Â′|Ψ〉. (29)

Since |Ψ〉 is arbitrary, we conclude that Â′ = Â. We say that Â is invariant under the
transformation. Acting with Û from the left on Û †ÂÛ = Â and using Û Û † = Î gives

[Â, Û ] = 0. (30)

If the transformation in question is continuous, we can consider infinitesimal transformations
given by Û = 1 − iQ̂∆a/~ + Ĉ where Ĉ is an operator representing terms of order (∆a)2

and higher. Inserting this into (30) gives 0 = −i[Â, Q̂]∆a/~ + [Â, Ĉ]. Dividing this equation
by ∆a and then taking the limit ∆a→ 0, the term [Â, Ĉ]/∆a→ 0, which implies

[Â, Q̂] = 0. (31)

If Â = Ĥ, i.e. if the Hamiltonian is invariant under the transformation, the transformation
is said to be a symmetry of the Hamiltonian/theory/system. If the transformation is contin-
uous, this is called a continuous symmetry; otherwise it is called a discrete symmetry. For a
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continuous symmetry, (31) holds, i.e.

[Ĥ, Q̂] = 0. (32)

Using the Heisenberg equation of motion for the generator, i.e.5 dQ̂(t)/dt = i
~ [Ĥ, Q̂(t)], one

finds dQ̂(t)/dt = i
~ [Ĥ, Q̂(t)] = i

~(ĤeiĤt/~Q̂e−iĤt/~−eiĤt/~Q̂e−iĤt/~Ĥ] = i
~e

iĤt/~[Ĥ, Q̂]e−iĤt/~,
which upon using (32) gives

dQ̂(t)

dt
= 0, (33)

i.e. Q̂(t) = Q̂, i.e. time-independent, i.e. the generator is a conserved quantity. This result,
that a continuous symmetry implies a conserved quantity, is often referred to as Noether’s
theorem.6 Applying this theorem to spatial translations and rotations, we see that

If the Hamiltonian is invariant under spatial translations, P̂ is conserved. (34)

If the Hamiltonian is invariant under rotations, Ĵ is conserved. (35)

Also, note that we assumed from the outset in our discussion that Ĥ is not explicitly time-
dependent, and then it follows automatically from Heisenberg’s equation of motion for Ĥ
that Ĥ is conserved. Applying Noether’s theorem to temporal translations just reproduces
the result that Ĥ is conserved.

A The Baker-Hausdorff theorem

The Baker-Hausdorff theorem is extremely useful for evaluating expressions of the form
exp (−B̂)Â exp (B̂) which are ubiquitous when considering transformations in quantum me-
chanics. The theorem states that

e−B̂Â eB̂ = Â+ [Â, B̂] +
1

2!
[[Â, B̂], B̂] + · · · . (36)

The rhs can be written more succinctly as
∑∞

n=0
1
n!

[Â, B̂]n where [Â, B̂]n is a nested commu-
tator, defined recursively as

[Â, B̂]0 ≡ Â, (37)

[Â, B̂]n ≡ [[Â, B̂]n−1, B̂], (n = 1, 2, . . .). (38)

[Â, B̂]1 is just the regular commutator [Â, B̂]. Note that if [Â, B̂] commutes with B̂ (which
is the case, e.g., if this commutator is just a number, not an operator), the Baker-Hausdorff
formula reduces to

e−B̂Â eB̂ = Â+ [Â, B̂]. (39)

5We assume that Q̂ has no explicit time dependence (thus there is no term ∂Q̂/∂t on the rhs of its
Heisenberg equation of motion).

6Referring to our result as Noether’s theorem may be a slight abuse of terminology, since the original
Noether’s theorem is a theorem in classical mechanics/classical field theory. The result derived here should
therefore perhaps be referred to as a quantum version/analogue of Noether’s theorem. Note also that the
classical Noether’s theorem makes use of the Lagrangian formulation, while in our discussion for the quantum
case it is the invariance of the Hamiltonian that enters.
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To prove (36) we consider

Ŷ (s) ≡ e−sB̂Â esB̂ (40)

where s is a real number. The lhs of (36) is then Ŷ (1). Let us calculate Ŷ (s) using its Taylor
series expansion around s = 0:

Ŷ (s) =
∞∑

n=0

1

n!

dnŶ (s)

dsn

∣∣∣
s=0

sn. (41)

Here
dnŶ (s)

dsn
= e−sB̂[Â, B̂]ne

sB̂ (42)

which can be proved by induction. It is true for n = 0, since d0Ŷ (s)/ds0 = Ŷ (s) =

e−sB̂Â esB̂ = e−sB̂[Â, B̂]0e
sB̂. Assuming it is true for an arbitrary nonnegative integer n,

we get

dn+1Ŷ (s)

dsn+1
=

d

ds

dnŶ (s)

dsn
=

d

ds
e−sB̂[Â, B̂]ne

sB̂

= e−sB̂(−B̂[Â, B̂]n + [Â, B̂]nB̂)esB̂ = e−sB̂[Â, B̂]n+1e
sB̂, (43)

which is indeed of the form (42) with n replaced by n + 1. This concludes the induction
proof. Inserting (42) into (41) gives Ŷ (s) =

∑∞
n=0

1
n!

[Â, B̂]ns
n. Setting s = 1 then gives (36).

QED.
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