
1 The Heisenberg model

1.1 Definition of the model

The model we will focus on is called the Heisenberg model. It has the following Hamiltonian:

H =
1

2

∑
i,j

i 6=j

JijSi · Sj. (1)

Here i and j refer to sites on a lattice. The model can be defined on any lattice, but for
concreteness (and to keep things simple) we will here limit ourselves to a hypercubic lattice in
d dimensions (d = 1, 2, 3).1,2 The Si are spin operators which live on the lattice sites. Spin
components on the same lattice site obey the standard angular momentum commutation
relations

[Sαj , S
β
j ] = i

∑
γ

εαβγS
γ
j (α, β, γ = x, y, z) (2)

and spins on different sites commute with each other. The spin operators all have spin S,
i.e. the operators S2

i have eigenvalue S(S+1) where S is an integer or half-integer. The spin
interaction in (1), which is of the form Si ·Sj, is called an exchange interaction, and the
coefficients Jij are called exchange constants. We will make the simplifying assumption
(which is often realistic) that the spin interactions are negligible between spins that are not
nearest-neighbors, i.e. Jij is nonzero only if i and j are nearest-neighbor lattice sites, in
which case we further assume Jij = J , where J is a constant. There are then two different
cases to consider, J < 0 and J > 0. For J < 0 the interaction energy of two spins favors
them to be parallel; this is the ferromagnetic case. For J > 0 antiparallel orientation is
instead favored; this is the antiferromagnetic case.

1.2 The S = 1/2 Heisenberg antiferromagnet as an effective low-
energy description of the half-filled Hubbard model for U � t

It turns out that the magnetic properties of many insulating crystals can be quite well
described by Heisenberg-type models of interacting spins. Let us consider an example based
on assuming that the electrons can be described in terms of the so-called Hubbard model,
with Hamiltonian

H = −t
∑
〈i,j〉,σ

(c†iσcjσ + h.c.) + U
∑
i

ni↑ni↓. (3)

This is probably the most important (and famous) lattice model of interacting electrons. c†iσ
creates an electron on site i with spin σ, and niσ = c†iσciσ counts the number of electrons
with spin σ on site i. In this model there is therefore one electronic orbital per site. The
first term in (3) is the kinetic energy describing electrons hopping between nearest-neighbor
sites i and j, and the second term is the interaction energy describing the energy cost U > 0

1In 2 dimensions a hypercubic lattice is a square lattice and in 3 dimensions it is a cubic lattice.
2Periodic boundary conditions will be used in all spatial directions, so that the Hamiltonian is fully

translationally invariant.
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associated with having two electrons on the same site (these electrons must have opposite
spin, as having two electrons on the same site with the same spin would violate the Pauli
principle). Note that the interaction energy between electrons which are not on the same
site is completely neglected in this model. The Hubbard model is the simplest model de-
scribing the fundamental competition between the kinetic energy and the interaction energy
of electrons on a lattice. Despite much research, there is still a great deal of controversy
about many of its properties in two and three dimensions (the model has been solved exactly
in one dimension, but even in that case the solution is extremely complicated).

1.2.1 Physical picture

Now consider a system with N lattice sites, and assume that there are also N electrons in
the system, so the average number of electrons per site is 1. This is called the half-filled
case because maximally the system could contain 2 electrons per site (one for each spin
projection ↑, ↓) and thus a total electron number of 2N . Assume further that U � t. This
suggests that to find the low-energy states we should first minimize the interaction energy
and then treat the kinetic energy as a perturbation. The interaction energy is minimized
by putting exactly one electron on each site; then no site is doubly occupied so the total
interaction energy is zero. Furthermore, whether the electron on a given site has ↑ or ↓-spin
is clearly unimportant; thus any spin distribution gives the same interaction energy, leading
to a large (2N -fold) degeneracy. Moving an electron to a different site containing an electron
with opposite spin creates a doubly occupied site which is penalized by a large energy cost
U . Thus as long as we’re only interested in understanding the physics of the system for
energies (and/or temperatures) much less than U , we can neglect configurations with double
occupancies. Thus the interaction energy completely determines the charge distribution of
the electrons while putting no constraints on their spin distribution. However, if we now
consider the kinetic energy term (∝ t) as a perturbation, it is clear that (see Fig. 1(a)) if
neighboring electrons have opposite spins, an electron can hop (virtually, in the sense of 2nd
order perturbation theory) to a neighboring site and back; this virtual delocalization reduces
the kinetic energy.3 In contrast (see Fig. 1(b)), if neighboring spins are parallel such hopping
is forbidden, as the intermediate state with two electrons on the same site with the same
spin would violate the Pauli principle. Therefore in this situation an effective interaction
is generated which favours neighbouring electrons to have opposite spin, i.e. antiparallel
orientation. It can be shown (see next subsection) that the resulting effective model, valid at
temperatures and energies � U , is the Heisenberg antiferromagnet for the S = 1/2 electron
spins, with J = 4t2/U (this expression for J can be understood from 2nd order perturbation
theory: there is one factor of −t for each of the two hops (first to the neighboring site, then
back) and a factor U coming from the energy denominator due to the larger energy of the
intermediate state). Therefore, the antiferromagnetic exhange interaction J comes about
due to an interplay between electron hopping, the electron-electron interactions, and the
Pauli principle; the effect of the antiferromagnetic exchange is to reduce the kinetic energy
of the electrons.

3That the kinetic energy is reduced by this process can be understood from the formula for the energy
correction in 2nd order perturbation theory, which is always negative for the ground state.
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Figure 1: Illustration of why an effective antiferromagnetic interaction is generated in the
half-filled Hubbard model with U � t. In both (a) and (b) the transition shown is between
an initial state with an electron on each site and an intermediate state where the electron
initially on site 2 has hopped to site 3. See text for further explanation.

1.2.2 Mathematical derivation

In the following we will show how this result can be derived mathematically.4 We start
out by considering a general model with Hamiltonian H whose eigenstates can be classified
according to whether they lie in the low-energy subspace (LES) that we want to find an
effective Hamiltonian for, or in the complementary high-energy subspace (HES). For the
half-filled Hubbard model with U � t, the LES would consist of the states with no doubly
occupied sites and the HES would consist of the states with at least one doubly occupied
site (i.e. having energies of order U). Let P and Q be projection operators which project
onto LES and HES respectively. Like any projection operators they satisfy P 2 = P and
Q2 = Q. And since LES and HES are orthogonal subspaces (i.e. a state in LES has no
component in HES and vice versa) we also have QP = PQ = 0. The time-independent
Schrodinger equation for the system is HΨ = EΨ, where E is an energy eigenvalue and Ψ
is an eigenstate. Since P +Q = I we can write this as

H(P +Q)Ψ = E(P +Q)Ψ. (4)

If we act with Q from the left on this equation, use QP = 0 and Q2 = Q, and rearrange, we
get

(QHQ− E)(QΨ) = −QH(PΨ) ⇒ QΨ = −(QHQ− E)−1QH(PΨ). (5)

This expression relates QΨ in HES to PΨ in LES. Since we want to find an effective Hamilto-
nian for LES we want to eliminate QΨ from the description. Hence we insert this expression
for QΨ back into (4), which then becomes

[H −H(QHQ− E)−1QH]PΨ = E(P +Q)Ψ. (6)

Next we act with P from the left to project this onto LES. Using PQ = 0 on the rhs and
P 2 = P on the lhs we get

[PHP − PHQ(QHQ− E)−1QHP ](PΨ) = E(PΨ). (7)

4This derivation follows Nagaosa’s book “Quantum field theory in strongly correlated electronic systems”,
Sec. 3.1.
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(Note that in arriving at this result we have also used PH(QHQ−E)−1Q = PHQ(QHQ−
E)−1Q, i.e. we inserted a Q to the right of PH because the operator to its right already
projects onto the HES subspace so inserting another Q won’t change this.)

So far everything has been exact and valid for a general Hamiltonian H. We now specialize
to the half-filled Hubbard model. We can write its Hamiltonian as H = HK + HU , where
the kinetic energy is

HK = −
∑
i,j

∑
σ

tijc
†
iσcjσ (8)

and the interaction energy is

HU = U
∑
i

ni↑ni↓. (9)

(Note that the kinetic energy operator HK we consider here is slightly more general than the
one in (3) as the hopping in HK is not necessarily restricted to be between nearest-neighbor
sites.) Furthermore, the projection operator P for the LES can be written P =

∏
i(1−ni↑ni↓)

and Q = I − P . We now need to find more explicit expressions for the operators PHP ,
PHQ, (QHQ− E)−1 and QHP appearing in (7).

• PHP . PHP = PHKP + PHUP . PHKP = 0. Why? Because first the rightmost P
projects onto LES. Then HK creates a state with one doubly occupied site (or rather a
linear combination of such states) which therefore lies in HES. Consequently, when the
leftmost P acts this state is killed. Next, PHUP = 0 is zero as well, because HUP = 0
since a state in LES has zero interaction energy. Hence PHP = 0.

• PHQ. PHQ = PHKQ+PHUQ. Here, PHUQ = 0 because the state created by HUQ
lies in HES, and therefore is killed by P . Hence PHQ = PHKQ.

• QHP . QHP = QHKP + QHUP . Here, QHUP = 0 because HUP = 0 (see above).
Hence QHP = QHKP .

• (QHQ− E)−1. Using the results so far, the operator acting on PΨ on the lhs in (7)

can be written −PHKQ(QHQ − E)−1QHKP . As HK ∝ tij (the hopping matrix
elements) this operator is already of order t2ij. As we want to treat the effects of HK

on the states in LES to lowest order in tij (since we are considering the limit t� U),
we may therefore replace (QHQ − E)−1 by its value to zeroth order in tij. Thus in
QHQ = QHKQ+QHUQ, we may set tij = 0 in HK giving QHKQ→ 0. Furthermore,
QHUQ can be replaced by U . This is because before this operator acts, the operator
QHKP to its right has created a state in HES with only one doubly occupied site,
which thus has energy U . Finally, in (QHQ−E)−1, the eigenvalue E in LES can also
be replaced by its value to zeroth order in tij, which is 0. Hence (QHQ−E)−1 can be
replaced by 1/U .

Using these results, the operator acting on PΨ on the lhs in (7) can to lowest order in tij be
replaced by −PHKQ(1/U)QHKP . This can be simplified further: As the state created by
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HKP is entirely in HES, the Q’s to its left are unnecessary and can be removed. Hence the
effective Hamiltonian for the states in LES is

Heff = −P H
2
K

U
P. (10)

Inserting the expression (8) for HK we find

PH2
KP =

∑
i,j

∑
i′,j′

∑
σ,σ′

tijti′j′ Pc
†
iσcjσc

†
i′σ′cj′σ′P. (11)

We now analyze this in more detail. First the rightmost P projects onto LES. Subsequently,
the composite operator c†iσcjσc

†
i′σ′cj′σ′ acts. The resulting state must be in LES, otherwise

it will be killed by the leftmost P . Hence the composite operator cannot create doubly
occupied sites, so the sites j, j′ where electrons are annihilated must match the sites i, i′

where electrons are created. Having i = j and i′ = j′ will give zero result since tii = 0 by
definition of the electron hopping. Hence a nonzero result is only obtained if i = j′ and
i′ = j. Hence

PH2
KP =

∑
ij

∑
σσ′

|tij|2Pc†iσcjσc
†
jσ′ciσ′P

=
∑
ij

∑
σσ′

|tij|2Pc†iσciσ′cjσc
†
jσ′P, (12)

where to arrive at the last expression we anticommuted twice (and used tii = 0). Since
cjσc

†
jσ′ doesn’t take us out of LES, we can insert P = P 2 to its left without any effect, giving

PH2
KP =

∑
ij

∑
σσ′

|tij|2Pc†iσciσ′P · Pcjσc†jσ′P. (13)

At this point we use the identities

c†iσciσ′ =
1

2
δσσ′(ni↑ + ni↓) + Si · σσ′σ, (14)

ciσc
†
iσ′ = δσσ′

(
1− ni↑ + ni↓

2

)
− Si · σσσ′ , (15)

where Si is the spin operator at site i, given by

Si =
1

2

∑
σ,σ′

c†iσσσ,σ′ciσ′ , (16)

and σ = (σx, σy, σz) is the vector of Pauli matrices given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (17)

where the first row/column corresponds to the index σ =↑= +1/2 and the second row/column
corresponds to σ =↓= −1/2. When the number of electrons per site is exactly 1, as it is in
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LES, the operators defined in (16) satisfy all properties of spin operators for spin S = 1/2.
Inserting the identities (14)-(15) into (13) and using Tr(σaσb) = 2δab where a, b = x, y, z, it
can be shown (you will be asked to do this in a tutorial) that the effective Hamiltonian for
LES can be written

Heff =
∑
i,j

Jij(Si · Sj − 1/4), (18)

where

Jij =
2|tij|2

U
> 0. (19)

The second term −(1/4)
∑

i,j Jij in (18) is just a constant and can be neglected. Hence the
effective Hamiltonian for LES is nothing but the antiferromagnetic Heisenberg model for
spin-1/2.

We will not here go into how other examples of Heisenberg models (e.g. with spin S > 1/2
on each site and/or with ferromagnetic interactions) can arise as low-energy descriptions of
different systems. Thus in the remainder of these notes we will simply consider the Heisen-
berg model as an interesting effective model of interacting spins and explore its properties
(such as the nature of its ground state and excitations) without dwelling more on the origin
of the model itself.

1.3 Ferro- and antiferromagnetic order

Let us discuss the behavior of the spins, as a function of temperature, in materials described
by the Heisenberg model. At high temperatures there are strong thermal fluctuations so that
the spins are disordered, meaning that the expectation value of each spin vanishes: 〈Ŝi〉 = 0.
(Here the brackets represent both a thermal and quantum-mechanical expectation value.)
However, below some critical temperature Tc it may be that the spins order magnetically,
meaning that the spins on average point in some definite direction in spin space, 〈Ŝi〉 6= 0.
Whether or not such magnetic order occurs depends on the dimensionality and type of lattice,
and the range of the interactions (we will limit ourselves to hypercubic lattices and nearest-
neighbor interactions in our explicit investigation of the Heisenberg model). If magnetic
order occurs with Tc > 0, then, as the temperature is lowered from Tc down to zero, 〈Si〉
will increase and reach some maximum value at zero temperature. The critical temperature
Tc is called the Curie temperature (TC) in ferromagnets and the Neel temperature (TN)
in antiferromagnets. The spin ordering pattern in two magnetically ordered phases are
illustrated for a square lattice in Fig. 2: In the ferromagnetic case (J < 0) all spins point in
the same direction (Fig. 2(a)) while in the antiferromagnetic case (J > 0) neighboring spins
point in opposite directions (Fig. 2(b)).

2 The Holstein-Primakoff representation

Note that the commutator of two spin operators is itself an operator (see (2)), rather than
just a complex number (c-number). This makes it much more complicated5 to work directly

5At least as far as analytical (as opposed to numerical) approaches are concerned.
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,

Figure 2: Average spin directions in phases with (a) ferromagnetic and (b) antiferromagnetic
order on the square lattice. (The ordering direction is arbitrary.)

with spin operators than with canonical bosonic (fermionic) creation and annihilation op-
erators whose commutators (anticommutators) are just c-numbers. It would therefore be
advantageous if one could represent the spin operators in terms of such canonical bosonic or
fermionic operators and work with these instead. Fortunately quite a few such representa-
tions are known. In these lectures we will make use of the so-called Holstein-Primakoff
(HP) representation which expresses the spin operators on a site j in terms of canonical
boson creation and annihilation operators a†j and aj as follows:

S+
j =

√
2S − n̂j aj, (20)

S−j = a†j
√

2S − n̂j, (21)

Szj = S − n̂j. (22)

Here we have introduced the raising and lowering operators S±j = Sxj ± iS
y
j . The operator

n̂j ≡ a†jaj is the number operator for site j, i.e. it counts the number of bosons on this site.
As the allowed eigenvalues of Szj are −S,−S+ 1, . . . , S you can see from the equation for Szj
that this boson number must satisfy the constraint

〈n̂j〉 ≤ 2S. (23)

Also note that the expressions for S+
j and S−j are Hermitian conjugates of each other, as

they should be. It can be shown that the spin commutation relations (2) and the relation
S2 = S(S + 1) follow from the HP representation and the bosonic commutation relations
[aj, a

†
j] = 1 etc. (You will be asked to verify this in a tutorial). As will hopefully become clear

in the next couple of sections, the HP representation is very useful for studying magnetically
ordered states and their excitations. The reason for this is related to the fact that the
vacuum of the aj bosons (i.e. the state with no such bosons) is the state corresponding to
the maximum eigenvalue S of Szj .
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3 Spin-wave theory of ferromagnets

We will now begin our study of the Heisenberg model (1) using spin-wave theory. We will
first consider the ferromagnetic case, with J < 0 (which can be written J = −|J |). It will
be convenient to rewrite the Hamiltonian in terms of the raising and lowering operators
Ŝ±j = Ŝxj ± iŜ

y
j . Also since we’re only considering nearest neighbor interactions we can write

j = i + δ where δ is a vector connecting nearest-neighbor sites. Actually to avoid counting
each interaction twice we will take δ to run over only half the nearest neighbor vectors. We
will consider hypercubic lattices only. Thus in 1D, we take δ = +x̂, in 2D δ = +x̂,+ŷ and
in 3D δ = +x̂,+ŷ,+ẑ. This gives

H = J
∑
i,δ

[
1

2
(S+

i S
−
i+δ + S−i S

+
i+δ) + Szi S

z
i+δ

]
. (24)

The state with all spins pointing along z, i.e. Szj = S is a ground state of the Heisenberg
ferromagnet. This should be intuitively quite reasonable, and it can be proven easily. First
let us show that it is an eigenstate. When we apply (24) to this state, the part involving
the ladder operators give exactly zero because the operators S+

j kill the ground state since it
already has maximum Szj which therefore cannot be increased further. Acting with the Szi S

z
j

gives back an energy −|J |S2Nz/2 times the same state, where z is the number of nearest
neighbors. This shows that this state is an eigenstate. To show that it is also the ground
state, we note that the minimal energy possible is given by

E0 = −|J |
∑
i,δ

max〈Si · Si+δ〉. (25)

It can be shown6 that max〈Si · Si+δ〉 = S2 which gives E0 = −|J |S2Nz/2, the same as
above. Hence the state in question is indeed a ground state.

6The material in this footnote was not discussed in the lectures. Let O be a Hermitian operator and let
{|Φn〉} be its complete set of orthonormal eigenstates, with eigenvalues On. We will consider the expectation
value of O in an arbitrary state |Ψ〉. We can expand |Ψ〉 in the set {|Φn〉}: |Ψ〉 =

∑
n cn|Φn〉. Normalization

of |Ψ〉 gives that
∑
n |cn|2 = 1. The expectation value of O can then be written

〈O〉 ≡ 〈Ψ|O|Ψ〉 =
∑
m,n

c∗mcn 〈Φm|O|Φn〉︸ ︷︷ ︸
Onδmn

=
∑
n

|cn|2On.

This shows that the largest value of 〈O〉 is given by the largest eigenvalue of O, obtained by taking |Ψ〉 to
be the eigenstate of O with the largest eigenvalue.

Now we consider spins on two different sites i 6= j. Since (Si + Sj)
2 = S2

i + S2
j + 2Si · Sj , we can write

Si · Sj =
1

2

[
(Si + Sj)

2 − S2
i − S2

j

]
.

The largest expectation value of Si · Sj is, from (6), given by the largest eigenvalue of the operator on the
rhs of this equation. The three terms on the rhs commute with each other, so we can find simultaneous
eigenstates for them. The eigenvalue of S2

i and S2
j is S(S+1). The eigenvalues of (Si+Sj)

2 are Stot(Stot+1),
where Stot = |S −S|, . . . , S +S = 0, 1, . . . , 2S. Thus the largest expectation value of Si ·Sj is obtained with
Stot = 2S, which gives

max〈Si · Sj〉 =
1

2
[2S(2S + 1)− S(S + 1)− S(S + 1)] = S2.

8



We will now use the HP representation to study the Heisenberg ferromagnet, especially
its excitations. As noted earlier we will consider a hypercubic lattice in d spatial dimensions,
i.e. a standard lattice in one dimension, a square lattice in 2 dimensions, and a cubic lattice
in 3 dimensions. The theory that will be developed is known as spin-wave theory.

A natural guess for the low-energy excitations would be that they just correspond to small
collective oscillations of the spins around the ordering direction (which we choose to be the
z direction). Thus these oscillations, which are called spin waves, make 〈Szj 〉 less than the
maximum value S. In terms of the HP representation this means that the boson number
〈n̂j〉 is nonzero, see (22). If this boson number 〈n̂j〉 is much smaller than S the reduction in
Szj is small (i.e. very weak oscillations) and one might expect that an expansion in a small
parameter proportional to 〈n̂j〉/S would make sense. One might expect this to work better
the larger S is, since one might guess that increasing S would make this parameter smaller
(we’ll verify this explicitly later). On the other hand, if it should turn out that 〈n̂j〉/S is not
small (this is something we’ll have to check at the end of our calculation), then our basic
assumption, that spin-waves are just weak oscillations around an ordered state, is wrong
or at least questionable, and we may have to conclude that the system is not magnetically
ordered after all. For example, this will be the conclusion if 〈n̂j〉/S turns out to be divergent,
which we’ll see some examples of later.

The above indicates that spin-wave theory is essentially a 1/S expansion. It is semi-
classical in nature, which follows since the limit S → ∞ corresponds to classical spins,
which can be seen e.g. from the fact that the eigenvalues of Ŝ2

i are S(S + 1) = S2(1 + 1/S).
If the spins were just classical vectors of length S, the square of their length should be just
S2. Instead we see that there is a correction factor (1 + 1/S) due to the quantum nature of
the spins. As the correction factor goes to 1 in the limit S → ∞, this limit corresponds to
classical spins.

Let us now discuss the spin-wave theory for the Heisenberg ferromagnet in detail. As
noted earlier, in both the quantum and classical ground state all the spins point along the
same direction, which we will take to be the z direction. We then rewrite the spin operators
in the Heisenberg Hamiltonian in terms of boson operators using the HP representation. We
write

√
2S − n̂j =

√
2S
√

1− n̂j/(2S) and expand the last square root here in a series in the
operator n̂j/(2S). This gives

H = −|J |NS2z/2− |J |S
∑
i,δ

[a†i+δai + a†iai+δ − a
†
iai − a

†
i+δai+δ] +O(S0). (26)

Here N is the total number of lattice sites and z is the number of nearest neighbors and
given by z = 2d for a hypercubic lattice in d spatial dimensions. (Note that after doing the
summations the two last terms inside the square brackets are in fact identical). We have only
included terms of O(S2) and O(S) in (26). To this order, the HP representation reduces to7

S+
j ≈
√

2Saj, S
−
j ≈
√

2Sa†j (and Szj = S−a†jaj). The term of O(S) is quadratic in the boson
operators and can be straightforwardly diagonalized. As it is quadratic it is equivalent
to noninteracting bosons. Terms in the Hamiltonian which are higher order in the 1/S

7Note that when the HP expressions for S±j are expanded in a series in n̂j/(2S), and this series is

truncated, the result is just approximate expressions for S±j . In particular they do not exactly obey the spin
commutation relations.
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expansion (not shown) contain four or more boson operators and thus represent interactions
between bosons. However, these are suppressed at least by a factor 1/S compared to the
O(S) noninteracting term and one can thus hope that their effects are small (at least at
large S and when the boson number is small) so that they can either be neglected to a first
approximation or be treated as weak perturbations on the noninteracting theory.

Let us next diagonalize the quadratic, O(S) term. In this ferromagnetic case, this can
be accomplished simply by introducing Fourier-transformed boson operators as follows:

ak =
1√
N

∑
i

e−ik·riai. (27)

This is just a variable transformation, so there are as many operators ak as there are operators
ai. The inverse transformation is

ai =
1√
N

∑
k

eik·riak. (28)

Periodic boundary conditions imply that e.g. ai = ai+Nxx̂ where Nx is the number of sites
in the x direction. This is satisfied if eikxNx = 1, i.e. kx takes the form kx = 2πnx/Nx

where nx is an integer. It is customary to choose nx to take the Nx successive values
−Nx/2,−Nx/2 + 1, . . . , Nx/2 − 1 (here we have assumed for simplicity that Nx is even so
that Nx/2 is in fact an integer). Then kx takes values in the interval [−π, π〉. Doing the same
for all directions, the resulting values of k lie within what is called the first Brillouin zone.
An important aspect of the transformation (27) is that it is canonical, i.e. it preserves the
commutation relations in the sense that the operators ak obey the same kind of commutation
relations as the original boson operators: [ak, a

†
k′ ] = δk,k′ etc. Inserting (28) in (26) and using

that
∑

i e
i(k−k′)·ri = Nδk,k′ one gets

H = E0 +
∑
k

ωka
†
kak, (29)

where
E0 = −|J |NS2z/2 (30)

and
ωk = 2|J |S

∑
δ

(1− cosk · δ) ≡ S|J |z(1− γk), (31)

where we have defined

γk =
2

z

∑
δ

cosk · δ. (32)

Eq. (29) describes a Hamiltonian which is just a bunch of independent harmonic oscillators,
each labeled by a wavevector k. The quanta of the harmonic oscillators are called magnons;
they are the quantized spin wave excitations (just like phonons are the quantized lattice
vibrations in a crystal) with energy ωk. In the limit k→ 0, we have

ωk ≈ |J |S|k|2. (33)
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As a magnon with wavevector k costs an energy ωk > 0,8 the ground state has no magnons,
i.e. 〈n̂k〉 = 0 at zero temperature (here n̂k = a†kak). The ground state energy is therefore
simply E0 which is the interaction energy of all spins pointing in the same direction with
maximal projection S along the z axis. As the temperature is increased, magnons will
be thermally excited. Since they are just noninteracting bosons (when O(S0) terms and
higher are neglected in the Hamiltonian, as done so far), the mean number of magnons with
momentum k is given by the Bose-Einstein distribution function,

〈n̂k〉 =
1

eβωk − 1
. (34)

The magnetization M ≡ (1/N)
∑

i〈Si〉 is a natural measure of the strength of the
putative magnetic order in the system (cf. the discussion in Sec. 1.3). If M ≡ |M | is
positive (zero) we say that the system is (is not) ferromagnetically ordered. The larger
M is, the stronger is the ferromagnetic order. We say that the magnetization is an order
parameter for the ferromagnetic phase. By definition, an order parameter for a given type
of order is a quantity that is nonzero in the phase(s) where that order is present and is zero
in other phases. With the ordering direction being the z direction, we get

M =
1

N

∑
i

〈Szi 〉 = S − 1

N

∑
i

〈n̂i〉 = S − 1

N

∑
k

〈n̂k〉 ≡ S −∆M. (35)

We’d like to look at how ∆M depends on temperature for low temperatures. We first
introduce an artificial wavevector cutoff k0 which is the smallest wavevector in the k sum;
the real system is described by the limit k0 → 0. We also introduce another wavevector
k̄ > k0 which is chosen such that ωk̄ � kBT � |J |S; this means in particular that for
|k| < k̄ the quadratic form (33) is valid. This gives

∆M =
1

N

 ∑
k0<|k|<k̄

1

e|J |Sk2/kBT − 1
+
∑
|k|>k̄

1

eωk/kBT − 1

 . (36)

The second term is independent of k0 and finite. For reasons that soon will become clear,
we will therefore neglect it and focus on the first term. Converting the sum to an integral
and expanding the exponential (using |J |S2k2 � kBT ) we get

∆M ∝
∫ k̄

k0

dk kd−1 kBT

|J |Sk2
∝ kBT

|J |S
·
{

1/k0 + . . . , d = 1
− log k0 + . . . , d = 2

(37)

Therefore we see that, at nonzero temperatures in one and two dimensions, ∆M diverges as
the cutoff k0 is sent to zero. Therefore our initial assumption that this correction is small, is
found to be wrong for these cases (note that the quantity ∆M/(2S) is the expectation value
of the average over all sites of our original expansion parameter n̂j/(2S), which we assumed
to be small when we expanded the square roots in the HP expression). Thus we conclude

8Here (and also in the antiferromagnetic case to be considered later) we gloss over a minor subtlety
associated with the k = 0 wavevector which comes with an energy ωk = 0.
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that M = 0 (i.e. there is no ferromagnetic order) at finite (i.e. nonzero) temperatures for
the Heisenberg model in one and two dimensions.

For the case of three dimensions, it can be shown9 that ∆M ∝ T 3/2 as T → 0. Thus
spin-wave theory predicts that ferromagnetic order is stable (i.e. M > 0) at sufficiently low
temperatures in three dimensions.

4 Spin-wave theory of antiferromagnets

We next turn to the antiferromagnetic case (J > 0 in (1)). As the ground state for classical
spins has the spins on neighbouring sites pointing in opposite directions, one might naively
guess that the ground state in the quantum case is analogous, thus having maximal and
opposite spin projections ±S on neighboring sites. Such a state can be written∏

j∈A

|S〉j
∏
l∈B

| − S〉l ≡ |N〉. (38)

Here A and B denote the two sublattices such that the spins on A (B) sites have spin
projection S (−S), i.e. the states | ± S〉 are eigenstates of Sz for the given lattice site with
eigenvalue ±S. It is however easy to see that |N〉 can not be the ground state, and is in fact
not even an eigenstate, for the Heisenberg model for finite values of S: Acting with H in (1)
on this state, the quantum fluctuation terms involving the spin raising and lowering operators
change the state so that H|N〉 is not proportional to |N〉. Note that this did not happen in
the ferromagnetic case because then the S+ operators always killed the ferromagnetic ground
state, leaving only the contribution from the SzSz part of the Hamiltonian. Consequently,
quantum fluctuations play a much more important role in the antiferromagnetic case, as
they change the ground state (and its energy) away from the “classical” result.

Although the ground state is not given by |N〉, it may still be that the ground state
has antiferromagnetic order, i.e. that the spins on sublattice A point predominantly in one

9The material in this footnote was not covered in the lectures. In this case one can find the leading
temperature dependence at low temperatures by writing the Bose-Einstein function in terms of a geometric
sum as follows (x ≡ |J |Sk2/kBT ):

1

ex − 1
= e−x

1

1− e−x
= e−x

∞∑
n=0

(e−x)n =

∞∑
n=1

e−nx,

and integrating over wavevectors up to infinity (i.e. k0 → 0 and k̄ →∞). This gives

∆M ≈ 1

(2π)3
· 2 · 2π

∫ ∞
0

dk k2
∞∑
n=1

e−n|J|Sk
2/kBT .

Changing integration variable to u = n|J |Sk2/(kBT ) the integral to solve is
∫
du
√
ue−u = (1/2)

√
πerf(

√
u)−

e−u
√
u where erf is the so-called error function which satisfies erf(0) = 0 and erf(∞) = 1. This gives finally

∆M ≈ 1

8

(
kBT

π|J |S

)3/2

ζ(3/2),

where ζ(s) =
∑
n n
−s is the Riemann zeta function.
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direction (taken to be the z direction here) and the spins on sublattice B point predominantly
in the opposite direction. (If so the state |N〉 captures the structure of the true ground state
at least in a qualitative sense.) To investigate this possibility we again develop a spin-wave
theory based on expanding the square roots in the HP expansion. On the A sublattice where
the spin projection in (38) is +S we use the standard expressions:

S+
Aj =

√
2S − a†jaj aj, (39)

S−Aj = a†j

√
2S − a†jaj, (40)

SzAj = S − a†jaj. (41)

However, on the B sublattice where the spin projection in (38) is −S we must modify the
HP expressions accordingly to reflect this:

S+
Bl = b†l

√
2S − b†l bl, (42)

S−Bl =

√
2S − b†l bl bl, (43)

SzBl = −S + b†l bl. (44)

Compared to the expressions on the A sublattice, these modified expressions correspond
to the changes S+ ↔ S−, Sz → −Sz, which preserve the commutation relations, which
shows that the HP expressions for sublattice B are indeed correct. Note that different boson
operators aj and bl have been introduced for sublattices A and B respectively. The indices
j and l run over the sites in A and B respectively. Inserting the HP expressions in the
Hamiltonian, expanding the square roots and keeping terms to order S in the Hamiltonian,
we get

H = J
∑
j∈A

∑
δ

[
2S

2
(ajbj+δ + h.c.) + S(a†jaj + b†j+δbj+δ)− S

2

]
+ J

∑
l∈B

∑
δ

[
2S

2
(blal+δ + h.c.) + S(b†l bl + a†l+δal+δ)− S

2

]
. (45)

Next we introduce Fourier-transformed operators

ak =
1√
NA

∑
j∈A

e−ik·rjaj, (46)

bk =
1√
NB

∑
l∈B

e−ik·rlbl. (47)

where NA = NB = N/2 is the number of lattice sites in each sublattice. The inverse
transformation is

aj =
1√
NA

∑
k

eik·rjak, (48)

bl =
1√
NB

∑
k

eik·rlbk. (49)
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Figure 3: Crystal Brillouin zone and magnetic Brillouin zone in one dimension (a) and two
dimensions (b).

The commutation relations are standard bosonic, i.e. the only nonzero commutators are
[ak, a

†
k′ ] = [bk, b

†
k′ ] = δk,k′ . We choose the k-vectors to lie in the Brillouin zone associated

with each sublattice. (Since the two sublattices are identical, their Brillouin zone is also
identical). This Brillouin zone is called the magnetic Brillouin zone to distinguish it from
the Brillouin zone associated with the full lattice which is called the crystal Brillouin zone.
In one dimension periodic boundary conditions gives aj+NA·2x̂ = aj (the factor of 2 comes
from the fact that the spacing between neigboring sites in the sublattice is 2, not 1) which
gives kx = 2πnx/(2NA). Choosing the NA values of nx which lie closest to 0 (i.e. nx =
−NA/2, . . . , NA/2−1) then gives kx ∈ [π/2, π/2〉. Thus the length of the magnetic Brillouin
zone is half the length of the crystal Brillouin zone [π, π〉. In two dimensions the two
sublattices are oriented at a 45 degree angle with respect to the full lattice and have a lattice
spacing which is

√
2 larger. It follows from this that the magnetic Brillouin zone is a square

oriented at a 45 degree angle with respect to the crystal Brillouin zone and has half its area.
These facts are illustrated in Fig. 3. In the following you should keep in mind that when
we are discussing antiferromagnets, it is implicitly understood that all k-sums are over the
magnetic Brillouin zone.

Inserting (48)-(49) in the Hamiltonian and using
∑

j e
i(k−k′)·rj = NAδk,k′ etc., and also

renaming the summation variable k as −k where needed, we get

H = −NJS2z/2 + JSz
∑
k

[γk(akb−k + a†kb
†
−k) + a†kak + b†kbk], (50)

where γk was defined earlier in (32). While the last two terms in the O(S) part are in
diagonal form, the first two terms are not; thus in contrast to the ferromagnetic case, Fourier
transformation alone does not diagonalize the Hamiltonian in the antiferromagnetic case. To
bring the Hamiltonian into diagonal form, we will perform another canonical transformation,
known as a Bogoliubov transformation:

αk = ukak − vkb†−k, (51)

βk = ukbk − vka†−k. (52)

Here uk and vk are two real functions of k which are to be determined. From the requirement
that [αk, α

†
k′ ] = [βk, β

†
k′ ] = δk,k′ we get the condition

u2
k − v2

k = 1. (53)
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From the requirement [αk, βk′ ] = 0 we get another condition, ukv−k = u−kvk. This is
satisfied if u−k = uk and v−k = vk, which will be assumed to hold in the following. The
inverse transformation is given by

ak = ukαk + vkβ
†
−k, (54)

bk = ukβk + vkα
†
−k. (55)

By expressing the Hamiltonian in terms of the α and β bosons it can be rewritten as

H = −NJS2z/2 + JSz
∑
k

{(2γkukvk + u2
k + v2

k)(α†kαk + β†kβk) + 2(γkukvk + v2
k)

+ [γk(u2
k + v2

k) + 2ukvk](αkβ−k + α†kβ
†
−k)}. (56)

Now we will choose uk and vk such that the term which is not on diagonal form, i.e. the
term proportional to αkβ−k + α†kβ

†
−k, vanishes. Thus we require that

γk(u2
k + v2

k) + 2ukvk = 0. (57)

Furthermore we note that the condition (53) is automatically satisfied if we set

uk = cosh θk, vk = sinh θk. (58)

Inserting this into (57) gives10 an equation which determines θk:

tanh 2θk = −γk. (59)

Since γ−k = γk it follows that θ−k = θk which is consistent with our earlier assumption that
uk and vk were even functions of k. Using (58) and (59), after some manipulations we get

H = −NJS2z/2−NJSz/2 +
∑
k

ωk(α†kak + β†kβk + 1)

= E0 +
∑
k

ωk(α†kak + β†kβk), (60)

where we have defined

ωk = JSz
√

1− γ2
k (61)

and
E0 = −NJS2z/2−NJSz/2 +

∑
k

ωk. (62)

Eq. (60) expresses the Hamiltonian in its final, diagonal form. The operators α†k and β†k
create magnon excitations with wavevector k and energy ωk. These magnons are bosons,
and are noninteracting in the approximation used here (i.e. when only including terms of
O(S2) and O(S) in the Hamiltonian). Note that in this antiferromagnetic case, for each k
there are two types of magnons (α and β) which are degenerate in energy. On the other
hand, the k sum goes over the magnetic Brillouin zone which only has N/2 k vectors, so

10We use that cosh2 x+ sinh2 x = cosh 2x and 2 coshx sinhx = sinh 2x.
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the total number of magnon modes is 2 ·N/2 = N , the same as for the ferromagnetic case.
Note that as k→ 0, ωk → 0 as in the ferromagnetic case, but unlike the ferromagnetic case,
for which a quadratic dispersion ωk ∝ |k|2 was found in this limit, in the antiferromagnetic
case we have instead a linear dispersion,

ωk ∝ |k| as k→ 0. (63)

In the ground state of H (call it |G〉) there are neither αk nor βk magnons as these cost an
energy ωk > 0. Thus |G〉 can be defined by the relations

αk|G〉 = 0, βk|G〉 = 0, for all k. (64)

This gives H|G〉 = E0|G〉, i.e. the ground state energy is E0, given in Eq. (62). The first
term −NJS2z/2, i.e. the term ∝ S2, is just the ground state energy Eclass of a classical
nearest-neighbor antiferromagnet of spins with length S. The other terms are ∝ S and
represent quantum corrections to the classical ground state energy. Note that this quantum
correction ∆E is negative:

∆E = E0 − Eclass =
∑
k

ωk −NJSz/2 = JSz
∑
k

[
√

1− γ2
k − 1]︸ ︷︷ ︸

<0

. (65)

Thus quantum fluctuations lower the energy of the system. (Note that ∆E was 0 in the
ferromagnetic case, i.e. there were no quantum fluctuations in the ferromagnetic ground
state.)

Let us next investigate the amount of magnetic order in the system. Thus we need
to identify an order parameter for antiferromagnetic order. Note that the magnetization
M = (1/N)

∑
i〈Si〉 can not be used since it is zero in the presence of antiferromagnetic

order, because the two sublattices give equal-magnitude but opposite-sign contributions to
M . Instead the natural order parameter is the so-called sublattice magnetization, defined by
averaging 〈Si〉 only over the sites of one of the two sublattices. Without loss of generality,
let’s pick sublattice A, where the putative ordering is in the z direction. The magnitude of
the sublattice magnetization is thus

MA =
1

NA

∑
j∈A

〈Szj 〉 = S − 1

NA

∑
j∈A

〈a†jaj〉 = S − 1

NA

∑
k

〈a†kak〉. (66)

Writing MA = S −∆MA, the correction ∆MA to the classical result S is therefore given by

∆MA =
1

NA

∑
k

〈a†kak〉. (67)

We need to rewrite this further in terms of the α and β type magnon operators, as it is in
terms of them that the Hamiltonian takes its simple harmonic oscillator form. This gives

∆MA =
2

N

∑
k

[u2
k〈α

†
kαk〉+ v2

k〈β−kβ
†
−k〉+ ukvk〈αkβ−k + h.c.〉]. (68)

16



Now we can calculate the expectation values. They are both thermal and quantum, i.e.
〈O〉 ≡ Z−1

∑
m〈m|O|m〉e−βEm where Z =

∑
m e
−βEm . Here the sum

∑
m is over the eigen-

states {|m〉} of H with energy eigenvalues Em and β = 1/(kBT ) where T is the temperature
and kB is Boltzmann’s constant. First consider

〈αkβ−k〉 = Z−1
∑
m

〈m|αkβ−k|m〉e−βEm (69)

and its complex conjugate. The summand involves 〈m|αkβ−k|m〉, which is the overlap of
the states β−k|m〉 and α†k|m〉. Both states are eigenstates of H, but as they clearly do not
have identical sets of occupation numbers of the various α and β bosons, their overlap is
zero. Hence 〈αkβ−k〉 and its c.c. are zero. Thus

∆MA =
2

N

∑
k

[u2
k〈α

†
kαk〉+ v2

k〈β
†
kβk〉+ v2

k] (70)

=
2

N

∑
k

[nk cosh 2θk +
1

2
(cosh 2θk − 1)]

= −1

2
+

2

N

∑
k

(
nk +

1

2

)
1√

1− γ2
k

. (71)

Here we used that 〈α†kαk〉 = 〈β†kβk〉 = 1/(eβωk − 1) ≡ nk and cosh 2θk = 1/
√

1− γ2
k (the

last result follows from cosh2 x = 1/(1− tanh2 x)).
We will not analyze Eq. (71) in its full glory, but briefly consider a few important points.

This expression has a temperature-dependent part coming from nk (note that nk = 0 at
T = 0) and a temperature-independent part coming from the two terms containing the
factor 1/2. Let us first consider the case of zero temperature. In one dimension the k-sum
becomes (note γk = cos k in one dimension)

1

N

∑
k

1√
1− γ2

k

∝ lim
k0→0

∫ π/2

k0

dk

sin k
. (72)

The most important contribution to this integral comes from the small-k region where we
can approximate sin k ≈ k. Thus the leading term becomes

∫
k0
dk/k = − log k0 → ∞ as

k0 → 0. Thus ∆MA diverges even at zero temperature. We must therefore conclude that
for this one-dimensional case our assumption that the system was magnetically ordered is
invalid and so is our truncated spin-wave expansion. Note that this conclusion holds for any
S. In two dimensions at zero temperature ∆MA is still nonzero so quantum fluctuations do
reduce the magnetization, but the correction turns out to be small enough, ∆M ≈ 0.2, so
that even for the lowest spin, S = 1/2, spin-wave theory indicates that the system is ordered
at zero temperature for a square lattice. This is also in agreement with other methods. In
three dimensions ∆M is even smaller so the order is more robust then.

Next we consider finite nonzero temperatures. We just summarize the results that are ob-
tained by analyzing (71) (which, we stress, is valid for a hypercubic lattice). In one dimension
there is of course no antiferromagnetic order since none existed even at zero temperature.
In two dimensions it turns out that the order does not survive at finite temperatures, so the
spin-wave approach again is invalid. In three dimensions the system is ordered at sufficiently
low temperatures.
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5 Summary of spin-wave results

In the table below we summarize the main conclusions we have obtained from applying
spin-wave theory to the Heisenberg ferromagnet and antiferromagnet on a hypercubic lattice
in d spatial dimensions (d = 1, 2, 3). “Ordered” means spin-wave theory predicts magnetic
ordering of the ferromagnetic/antiferromagnetic type, “disordered” means spin-wave theory
predicts the absence of such order.

Ferromagnet Antiferromagnet
d = 1, T = 0 Ordered Disordered
d = 1, T > 0 Disordered Disordered
d = 2, T = 0 Ordered Ordered
d = 2, T > 0 Disordered Disordered
d = 3, T = 0 Ordered Ordered
d = 3, T > 0 Ordered (at low T ) Ordered (at low T )

6 Broken symmetry and Goldstone modes

6.1 Broken symmetry

By definition, a symmetry transformation of a Hamiltonian is a transformation that leaves
the Hamiltonian invariant (for more details, see the lecture notes named “Transformations
and symmetries in quantum mechanics”). As an example, the Heisenberg Hamiltonian (1)
considered in these notes is invariant under global spin rotations. Therefore we say that the
Heisenberg Hamiltonian has a global spin rotation symmetry. A global spin rotation (w, φ)
is a transformation in which all the spin operators Si are rotated by the angle φ around
the axis w (more precisely, w is a unit vector that points in the direction of the rotation
axis). The word ’global’ refers to the fact that all spin operators are rotated in the same way.
An intuitive argument for the invariance of the Heisenberg Hamiltonian under global spin
rotations can be made by noting that if the spins had been just classical vectors, rotating
them all in the same way preserves the angles between them and thus it also preserves the
scalar products Si ·Sj in the Heisenberg Hamiltonian. We can show the invariance rigorously
by making use of some results from the theory of transformations and symmetries in quantum
mechanics (again, see the lecture notes with the same name). Since the rotation axis can be
arbitrary, H is invariant provided that it commutes with the generator Stot ·w for global spin
rotations around any axis w, which it will do if it commutes with the generators Sxtot, S

y
tot,

Sztot for global spin rotations around the x, y, and z axes. Here Stot =
∑N

i=1 Si is the total
spin operator for the system. Let us consider the proof involving Sztot; the proofs involving
Sxtot and Sytot can be done in exactly the same way. So we wish to show that [H,Sztot] = 0.
Consider any two spins 1 and 2 that interact with each other via a term J12 S1 · S2 in the
Heisenberg Hamiltonian. Their contribution to [H,Sztot] is proportional to

[S1 · S2, S
z
tot] = [Sx1S

x
2 + Sy1S

y
2 + Sz1S

z
2 , S

z
1 + Sz2 ]

= [Sx1 , S
z
1 ]Sx2 + [Sx2 , S

z
2 ]Sx1 + [Sy1 , S

z
1 ]Sy2 + [Sy2 , S

z
2 ]Sy1

= −iSy1Sx2 − iS
y
2S

x
1 + iSx1S

y
2 + iSx2S

y
1 = 0, (73)
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so the result [H,Sztot] = 0 follows immediately.
When the ground state of the Heisenberg Hamiltonian is magnetically ordered (either

ferromagnetically for J < 0 or antiferromagnetically for J > 0), so that 〈Si〉 6= 0, this
ground state is not invariant under a global spin rotation. For example, if we have a
ferromagnetically ordered ground state with all the spins pointing in the z direction, rotating
this state by an angle φ around a general axisw leads to a different ferromagnetically ordered
ground state with all spins pointing in a different direction. As a concrete example, if we
rotate all spins by 90 degrees around the negative x direction, after the rotation all the spins
would point in the y direction. Clearly the nonzero order parameter M is also not invariant;
it undergoes exactly the same rotation as the spins. The same conclusion also holds for the
antiferromagnetic ground state and its order parameter.

To describe this situation we say that the ground state ”spontaneously” breaks the
global spin rotation symmetry of the Hamiltonian. More generally, spontaneous symmetry
breaking refers to the situation when the ground state of the Hamiltonian is less symmetric
than the Hamiltonian, i.e. the ground state is not invariant under all transformations that
leave the Hamiltonian invariant.

For simplicity we focused on the ground state here. The notion of spontaneous symmetry
breaking can however be generalized to systems at finite temperature: the equilibrium state
of the Heisenberg model is said to exhibit spontaneous symmetry breaking if it has magnetic
order, i.e. if its order parameter is nonzero. More generally, most known ordered phases of
matter can be described in terms of broken symmetries.11

The fact that the symmetry can be spontaneously broken is actually a subtle issue in
itself, and here we will only present a brief (and rather handwaving) discussion to hopefully
shed some light on this. At first sight it may seem strange that symmetry breaking can
happen at all. Any global spin rotation of a spin configuration will lead to a different,
rotated configuration with exactly the same energy. Thus, as no directions are energetically
more preferred than others, a statistical average over all directions should give 〈Si〉 = 0 and
thus no broken symmetry. The shortcoming of this argument is that it is only based on
considering the energy of different states and does not take into account the extent to which
the system can appreciably change its state during the relevant time scale for experimental
measurements. Broken symmetry occurs when the system effectively gets trapped in a
certain subset of states corresponding to a particular nonzero value of the order parameter.
In this situation, to change the value of its order parameter would require essentially all spins
to behave “in unison”, which for a macroscopically large number of spins below the critical
temperature becomes prohibitively unlikely, at least on the time scales of the measurement.
Broken symmetry is thus related to the breakdown of the ergodic hypothesis (so-called
ergodicity breaking).12

11Much research, both theoretical and experimental, is currently being done looking for novel phases of
matter with more subtle types of order that cannot be described in terms of broken symmetries.

12 For a more detailed discussion of these issues, see e.g. the discussion in Ch. 2 in N. Goldenfeld,
”Lectures on phase transitions and the renormalization group”, Westview Press, 1992.
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6.2 Goldstone modes

Symmetries of a Hamiltonian can be classified as discrete or continuous. A symmetry is
discrete if the associated symmetry transformations form a discrete set. In contrast, a
symmetry is continuous if the associated symmetry transformations form a continuous set.
The global spin-flip symmetry of an Ising model is an example of a discrete symmetry. The
global spin-rotation symmetry of the Heisenberg model, on the other hand, is a continuous
symmetry, since the rotations form a continuous set.

We found that both in the ferromagnetic and antiferromagnetic Heisenberg model, the
magnon excitations have an energy ωk that goes to zero as k→ 0. This implies that there is
no gap in the excitation spectrum, i.e. there is no minimum nonzero energy cost to creating
an excitation. We say that the magnon excitations are gapless. When the ground state of
the Heisenberg model is magnetically ordered and thus breaks the continuous symmetry of
the Heisenberg model, these gapless excitations are a consequence of the so-called Goldstone
theorem,13 and are therefore also sometimes referred to as Goldstone modes or Goldstone
bosons. The Goldstone theorem implies that when the ground state breaks a continuous
symmetry of the Hamiltonian, gapless bosonic excitations will exist in the energy spectrum.

13More precisely, a generalized version of this theorem due to Nielsen and Chadha.
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