Solutions to exercises for week 4

Exercise 1

(a) The equations of motion are given by the Euler-Lagrange equations
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Here, to get the second expression on the third line we used the symmetry ¢** = ¢* and a
renaming of the dummy summation indices A <+ v. Inserting these results into the Euler-
Lagrange equation gives
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i.e. each of the two fields separately satisfies the Klein-Gordon equation.
(b) We have

/ 1 / / 1 /
L— L= 5[(81@1)(8%)1) (0u2) (0" ¢5)] — oM 2[(61)% + (5)7]. (5)
The expressions inside the two square brackets both take the form
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with f; = 0,¢; and g; = 0"¢; in the first bracket and f; = g; = ¢; in the second bracket
(there’s implicitly also a sum over p in the first bracket, but we can consider each value of
w separately). Using
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and similarly for the g functions, we get

fig+ 05 = (figr + f292)(C052 o + sin® a) + (frge + faor — fr92 — fogr) cosasina
= fig1 + fage, 9)

from which it follows that £’ = L.

(¢) The infinitesimal form is obtained by Taylor-expanding the general form of the transfor-
mation to first order in the parameter a. This gives
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(d) We have
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Since L' = L, we can take J" = 0. The quantities A¢; can be read off from (10)-(11) as
Apy = —¢po and Agy = ¢;. We found n (a). Putting it all together gives
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Exercise 2
(a) Starting from
L = (9,0%)(0"®) — m*®* P, (14)
we insert for ® and ®* in terms of the real ﬁeldS'
¢ = (¢1 + i¢2), (15)
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This gives
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This is identical to the Lagrangian introduced in Exercise 1, because the imaginary terms in
the mass part (oc m?) obviously cancel, and so do the imaginary terms in the kinetic part.
This latter fact can e.g. be seen as follows:
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Here we used that the matrix ” g with upper indices” is by definition the inverse of the matrix
”g with lower indices” (the metric tensor) and therefore g,,g"* = &)

(b) By using the expression (14) for £, and treating ® and ®* as independent fields, one
finds easily
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Inserting these results into the Euler-Lagrange equation for ®* gives
(0,0" +m*)® = 0. (21)

As in Exercise 1, we arrive at the Klein-Gordon equation, but now it is a complex equation
since ® is complex. By considering the real and imaginary parts of this single complex
equation, one can reexpress it as two real equations, which are the Klein-Gordon equations
for the real fields ¢; and ¢, found in 1(a).

(c) This follows easily because, in each term in £, the number of factors involving ® equals
the number of factors involving ®*, and therefore the o dependence in L' cancels since
el =1,

(d) Expanding to first order in « gives

P — P =1+ ia) =2+ iad, (22)
P* — " =1 —ia) = P* —iad”. (23)
(e) We have
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Since L is invariant we can take J* = 0. From the infinitesimal form in 2(d) we find
AP = P, (25)
AP = —id". (26)

Using also (20) and its c.c. (note that £ is real) we find
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By inserting (15)-(16) one can easily verify that all terms involving only one of the real fields
cancel, leaving the expression (13).



