
Solutions for week 10 exercises

Exercise 1

Problem 5.6.5

Let the equation of motion be
Dxψ(x) = 0 (1)

where Dx is a differential operator that acts on the coordinate x. Then the Green’s function
G(x− y) is defined as

DxG(x− y) = −iδ(x− y) (2)

where δ(x− y) is the (4-dimensional) Dirac delta function. The factor −i on the rhs is just
a common convention.

The equation of motion for the nonrelativistic field theory considered here is the Schrödinger
equation, so Dx = −i∂0 − 1

2m
∇2. Hence the Greens’ function satisfies[

−i∂0 −
1

2m
∇2
]
G(x− y) = −iδ(x− y) . (3)

Writing both G(x− y) and δ(x− y) in terms of their Fourier transform gives[
−i∂0 −

1

2m
∇2
] ∫ d4p

(2π)4
G(p)e−ip(x−y) = −i

∫ d4p

(2π)4
e−ip(x−y) , (4)

where, as usual, p(x− y) ≡ pµ(xµ − yµ) = p0x
0 − ~p · (~x− ~y). The x-dependence of G(x− y)

lies entirely in the exponential factor inside the momentum integral. Moving the differential
operator inside the integral and letting it act on this factor gives∫ d4p

(2π)4

[
−p0 +

~p2

2m

]
G(p)e−ip(x−y) = −i

∫ d4p

(2π)4
e−ip(x−y) . (5)

Comparing the Fourier coefficients on both sides of this equation, the momentum-space
propagator G(p) can be read off as

G(p) =
i

p0 − ~p2

2m

. (6)

1



Problem 5.6.6

In this case the equation of motion is the Dirac equation. Hence Dx = iγµ∂µ − m, and
therefore the corresponding Green’s function (sometimes called the ”Dirac propagator”)
satisfies

[iγµ∂µ −m]G(x− y) = −iδ(x− y) . (7)

In terms of Fourier transforms this becomes

[iγµ∂µ −m]
∫ d4p

(2π)4
G(p)e−ip(x−y) = −i

∫ d4p

(2π)4
e−ip(x−y) . (8)

Differentiating gives∫ d4p

(2π)4
[γµpµ −m]G(p)e−ip(x−y) = −i

∫ d4p

(2π)4
e−ip(x−y) . (9)

(Here we were careful not to change the order of matrices, as we cannot assume that they
commute with each other. To differentiate the exponential, we first moved it left past the
matrix G(p) (they commute)). Comparing Fourier coefficients gives

[γµpµ −m]G(p) = −i. (10)

To find G(p) from this matrix equation we can multiply it from the left with the inverse of
the matrix γµpµ − m. However, rather than trying to find this inverse by a direct ”brute
force” calculation, it is more convenient to multiply the matrix equation with γνpν +m from
the left and use that

(γνpν +m)(γµpµ −m) = γνγµpνpµ −m2

=
1

2
{γµ, γν}︸ ︷︷ ︸

2gµν

pµpν −m2 = pµp
µ −m2 (11)

= p2 −m2 ,

which is a c-number. (To go from the second to the third expression we split the first term in
two halves and then renamed the dummy summation indices µ↔ ν in one of them.) Thus

(p2 −m2)G(p) = −i(γνpν +m), (12)

giving

G(p) = −iγ
µpµ +m

p2 −m2
. (13)

Note that in the QFT literature one often defines γµpµ ≡ /p.

One final remark: In these exercises (5.6.5 and 5.6.6) we only made use of the differential
equation (2) to find G(p). But to define G(p) uniquely the differential equation is not



enough; one also needs to specify boundary conditions. Different propagators (which all
satisfy (2)) obeying different boundary conditions can be defined by specifying how the
integration contour for the p0-integral should go around the pole(s) of G(p). This can be
implemented by introducing infinitesimal terms iε (where ε is a positive infinitesimal) in the
denominator of the propagators. We have seen an example of this in the definition of the
so-called Feynman propagator for the real scalar field.

Exercise 2

(a) Let us define the unitary operators

A ≡ eiH0(t−t0), (14)

B ≡ e−iH(t−t′), (15)

C ≡ e−iH0(t′−t0). (16)

Then we can write
U(t, t′) = ABC. (17)

Furthermore, we have

∂A

∂t
= iH0A = iAH0, (18)

∂B

∂t
= −iHB = −iBH, (19)

∂C

∂t
= 0. (20)

Thus

∂

∂t
U(t, t′) =

∂A

∂t
BC + A

∂B

∂t
C + AB

∂C

∂t
= iAH0BC − iAHBC + 0

= iA(H0 −H)BC

= −iAHintBC

= −iAHintA
†A︸ ︷︷ ︸
=I

BC

= −ieiH0(t−t0)Hinte
−iH0(t−t0)U(t, t′)

= −iHI(t)U(t, t′), (21)

from which the desired result follows.

It is worth noting that in this calculation we were careful not to interchange the order of
(operators involving) H0 and H, as these do not commute with each other. For the same
reason, it follows that, say,

AB = eiH0(t−t0)e−iH(t−t′) 6= eiH0(t−t0)−iH(t−t′). (22)



More generally, for two arbitrary operators O1 and O2,

eO1eO2 6= eO1+O2 unless [O1, O2] = 0. (23)

This needs to be kept in mind when manipulating exponentials of various operators.1

(b) We have

U †(t, t′)U(t, t′) = (ABC)†ABC = C†B†A†ABC

= C†B†BC = C†C = I (24)

where we successively used the unitarity of A, B, and C (in that order). We also used that
(ABC)† = C†B†A†, which is a special case of

(O1O2 . . . On−1On)† = O†nO
†
n−1 . . . O

†
2O
†
1. (25)

This result can be shown from repeated iteration of the basic property (O1O2)
† = O†2O

†
1. For

example,
(O1O2O3)

† = ((O1O2)O3)
† = O†3(O1O2)

† = O†3O
†
2O
†
1. (26)

(c) We have

U(t1, t2)U(t2, t3) = eiH0(t1−t0)e−iH(t1−t2) e−iH0(t2−t0)eiH0(t2−t0)︸ ︷︷ ︸
=I

e−iH(t2−t3)e−iH0(t3−t0)

= eiH0(t1−t0) e−iH(t1−t2)e−iH(t2−t3)︸ ︷︷ ︸
=e−iH(t1−t2)−iH(t2−t3)

e−iH0(t3−t0)

= eiH0(t1−t0)e−iH(t1−t3)e−iH0(t3−t0)

= U(t1, t3). (27)

Note that in the second line here we were able to combine the two indicated exponentials into
one only because the arguments of the two exponentials commuted in this case. Similarly,

U(t1, t3)U
†(t2, t3) = eiH0(t1−t0)e−iH(t1−t3)e−iH0(t3−t0)eiH0(t3−t0)eiH(t2−t3)e−iH0(t2−t0)

= eiH0(t1−t0)e−iH(t1−t3)eiH(t2−t3)e−iH0(t2−t0)

= eiH0(t1−t0)e−iH(t1−t2)e−iH0(t2−t0)

= U(t1, t2). (28)

1If [O1, O2] commutes with both O1 and O2 (as happens e.g. if [O1, O2] is a c-number), one has the
simple formula eO1eO2 = eO1+O2e[O1,O2]/2. Otherwise things are very complicated (see the section ”The
Zassenhaus formula” in the Wikipedia article ”Baker-Campbell-Hausdorff formula”).


