
Solution for week 11 exercises

Exercise 1

(a) The diagram has 2 vertices (internal points with 4 lines attached) and is therefore a 2nd
order diagram.

(b) Labeling the left vertex as z1 and the right vertex as z2, the Feynman rules give the
following expression for the diagram:

(−iλ)2

S

∫
d4z1

∫
d4z2 DF (x− z1)[DF (z1 − z2)]3DF (z2 − y). (1)

(c) As discussed in the lectures, the perturbation expansion for the 2-point function is given
by the sum of all connected diagrams. Expressions for these diagrams can be deduced from
the numerator in the expression for the perturbation expansion, which reads

〈0|T{φI(x)φI(y) exp
[
−i
∫
dtHI(t)

]
}|0〉. (2)

As HI(t) ∝ λ, the term ∝ λ2 is given by the 2nd order term in the expansion of the
exponential:
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〈0|T{φI(x)φI(y)(−i)2

∫
dt1

∫
dt2HI(t1)HI(t2)}|0〉. (3)

Inserting

HI(t) =
λ

4!

∫
d3z[φI(t, ~z)]4 (4)

this can be written
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4!

)2 ∫
d4z1

∫
d4z2 〈0|T{φI(x)φI(y)φI(z1)φI(z1)φI(z1)φI(z1)φI(z2)φI(z2)φI(z2)φI(z2)}|0〉,

(5)
where we defined zµi = (ti, ~zi) (i = 1, 2). From the structure of the diagram one sees that
it should represent pairings of the following type: Pair φI(x) with one of the 4 fields at one
of the vertices, and pair φI(y) with one of the 4 fields at the other vertex, and furthermore,
pair the 3 remaining fields at one vertex with the 3 remaining fields at the other vertex. This
gives a combinatorial factor

2 · 4 · 4 · 3! (6)
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One factor of 4 comes from the 4 different ways to pair φI(x) with one of the 4 fields of a
given vertex, and the other factor of 4 comes from the 4 different ways to pair φI(y) with one
of the 4 fields at the other vertex. The factor of 2 comes from the fact that the ”given vertex”
could be either z1 or z2 (making the ”other vertex” z2 or z1, respectively), corresponding to
the two possible ways of labeling the vertices in the diagram. The factor of 3! arises because
this is the number of ways to pair the 3 remaining fields at one vertex with the 3 remaining
fields at the other. Thus we get
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S
=

2 · 4 · 4 · 3!

2!(4!)2
=

1

6
⇒ S = 6. (7)

Exercise 2 (= Exercise 5.6.7)

1) For the Dirac Lagrangian density

L = ψ̄(iγµ∂µ −m)ψ, (8)

we found in the exercises for week 6 that the Hamiltonian density is

H = −iψ̄γj∂jψ +mψ̄ψ (9)

and the 4-current is

jµ = ψ̄γµψ.

This gives
j0 = ψ̄γ0ψ = ψ†ψ (10)

and thus

K ≡ H− µj0 = −iψ̄γj∂jψ +mψ̄ψ − µψ†ψ. (11)

2) We interpret the quantity K as the Hamiltonian density H′ associated with a Lagrangian
density L′:

H′ = Π′ψ∂0ψ − L′ (12)

where

Π′ψ =
∂L′

∂(∂0ψ)
. (13)

We want to find L′. Let us use the ansatz (”guess”) that

L′ = L+ f(ψ̄, ψ), (14)



in particular, f is not a function of ∂0ψ or ∂0ψ̄. Thus

Π′ψ =
∂L′

∂(∂0ψ)
=

∂L
∂(∂0ψ)

+
∂f

∂(∂0ψ)︸ ︷︷ ︸
=0

=
∂L

∂(∂0ψ)
= Πψ (15)

(Note also that because neither f nor L depend on ∂0ψ̄, there is no term (∂0ψ̄)Π′ψ̄ on the

rhs of (12).) This gives

f = L′ − L = (Π′ψ∂0ψ −H′)− (Πψ∂0ψ −H) = H−H′ = µj0 = µψ̄γ0ψ. (16)

As the rhs is only a function of ψ̄ and ψ, our ansatz was correct. Thus

L′ = L+ f = iψ̄γµ∂µψ −mψ̄ψ + µψ̄γ0ψ

= iψ̄γ0(∂0 − iµ)ψ + iψ̄γj∂jψ −mψ̄ψ. (17)

We see that L′ can be obtained from L by the replacement ∂0 → ∂0 − iµ, as claimed in the
problem text.

3) The Lagrangian density for a complex scalar field is

L = (∂µΦ)∗ (∂µΦ)−m2Φ∗Φ . (18)

We have

ΠΦ =
∂L

∂(∂0Φ)
= ∂0Φ∗ ,

and similarly ΠΦ∗ = ∂0Φ. The Hamiltonian density then becomes

H = ΠΦΦ̇ + ΠΦ∗Φ̇∗ − L
= 2ΠΦ∗ΠΦ − L
= ΠΦ∗ΠΦ + (∇Φ)∗ · (∇Φ) +m2Φ∗Φ . (19)

The conserved current is given by Eq. (3.42) in JOA’s lecture notes (see also week 4 exercises):

jµ = i [Φ (∂µΦ)∗ − Φ∗ (∂µΦ)] . (20)

The quantity K = H−µj0 is to be interpreted as a Hamiltonian-type density. Thus we must
express j0 in terms of ΠΦ and Π∗Φ instead of in terms of the time derivatives of Φ and Φ∗.
This gives

j0 = i [ΠΦΦ− ΠΦ∗Φ∗] , (21)

and so

K = H− µj0 = ΠΦ∗ΠΦ + (∇Φ)∗ · (∇Φ) +m2Φ∗Φ − µi [ΠΦΦ− ΠΦ∗Φ∗] .



We can construct the associated Lagrangian density L′ from

L′ = ΠΦΦ̇ + ΠΦ∗Φ̇∗ −K (22)

where Φ̇ is given by Hamilton’s equation

Φ̇ =
∂K
∂ΠΦ

= ΠΦ∗ − iµΦ .

Thus
ΠΦ∗ = (∂0 + iµ)Φ. (23)

Similarly, from Hamilton’s equation Φ̇∗ = ∂K/∂ΠΦ∗ one obtains ΠΦ = (∂0 − iµ)Φ∗. One
now uses these equations to eliminate ΠΦ and ΠΦ∗ from the rhs of (22), as appropriate for
a Lagrangian-type density. This gives

L′ = [(∂0 + iµ)Φ]∗[(∂0 + iµ)Φ] + (∂iΦ)∗(∂iΦ)−m2Φ∗Φ. (24)

Two comments:

• Note that if we had reversed the overall sign in the expression for jµ in Eq. (20) (which
would have been an equally good choice since the conservation law ∂µj

µ = 0 would
still hold), the sign of the iµ terms in L′ would have been reversed as well. (Of course,
the same thing is true for the problem of the Dirac field considered in 1) and 2)).

• Note that in this problem of a complex scalar field the difference L′ − L is found to
be not just a function of Φ and Φ∗, but also depends on their time derivatives. Thus
an ansatz L′ = L+ g(Φ,Φ∗) analogous to what we used for the Dirac field would have
failed for this problem.


