
TFY4210, Quantum theory of many-particle systems, 2014:
Tutorial 3

1. Second-quantized form of some single-particle operators.

Consider a system of electrons.

(a) The total momentum operator is in first quantization given by

P =
N∑
j=1

~
i
∇j. (1)

Find the second-quantized representation of P expressed using the momentum-spin (k, σ)
single-particle basis.

(a) The spin operator for an electron is in first quantization given by

s =
~
2
τ , with τ =

{(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
, (2)

i.e. the x-, y, and z components of τ are the respective Pauli matrices. Show that the
second-quantized representation of S =

∑N
j=1 sj, expressed using some single-particle basis

(µ,σ) where µ here represents quantum numbers not related to spin, is given by

S =
~
2

∑
µ

{
c†µ↓cµ↑ + c†µ↑cµ↓, i(c

†
µ↓cµ↑ − c

†
µ↑cµ↓), c

†
µ↑cµ↑ − c

†
µ↓cµ↓

}
. (3)

2. Cancellation of the q = 0 term in the jellium model of interacting electrons.

In the lectures we showed that the second-quantized representation of the Coulomb electron-
electron interaction energy is

Hel−el =
1

2Ω

∑
q

∑
k,σ

∑
k′,σ′

vqc
†
k+q,σc

†
k′−q,σ′ck′,σ′ck,σ (4)

where vq is the Fourier transform of the Coulomb interaction. At first sight the presence of a
q = 0 term in Hel−el would appear problematic since vq ∝ 1/q2 (as will be seen in (b) below).
A real system, however, must be charge neutral to be stable, so there must also be positive
charges present that compensate the negative ones and thus also give contributions to the
Coulomb interaction energy of the system, and this will cancel the q = 0 term in Hel−el. To
investigate this in detail in a concrete model, consider a system consisting of electrons and
a background of compensating positive charges, modeled to be fixed in space with a certain
density ρ+(r). The total Coulomb interaction energy of the system can then be written as

HI = Hel−el +Hb−b +Hel−b (5)
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where the three terms on the rhs represent, respectively, the interaction energy of the elec-
trons, of the positive background, and between the electrons and the background. In first
quantization we can write1

Hel−el =
1

2

e2

4πε0

N∑
i 6=j

e−µ|ri−rj |

|ri − rj|
, (6)

Hb−b =
1

2

e2

4πε0

∫
d3r

∫
d3r′

ρ+(r)ρ+(r′)e−µ|r−r′|

|r − r′|
, (7)

Hel−b = − e2

4πε0

N∑
i=1

∫
d3r

ρ+(r)e−µ|ri−r|

|ri − r|
, (8)

where the case of the Coulomb interaction corresponds to taking µ = 0 in these expressions.
The µ-dependent factor has been included to ensure that the q = 0 terms are mathematically
well defined. It will be shown that they cancel for an arbitrary value of µ. At the end of
the calculation, after the thermodynamic limit Ω→∞ has been taken (keeping the density
N/Ω of electrons fixed), the parameter µ is then taken to 0, recovering the Coulomb case of
interest.

Charge neutrality requires that
∫
d3r ρ+(r) = N . We will in the following consider the so-

called jellium model, where the background charge is taken to be uniform, i.e. ρ+(r) = N/Ω.

(a) Show that Hb−b and Hel−b are both constants, given by, respectively,

Hb−b =
1

2

e2

ε0µ2

N2

Ω
, (9)

Hel−b = − e2

ε0µ2

N2

Ω
. (10)

Hint: Use translational invariance to shift the origin of integration.

(b) Show that the Fourier transform of the µ-dependent generalization e−µ|r−r′|

|r−r′| of the Coulomb
interaction is given by

vq =
e2

ε0(q2 + µ2)
. (11)

(c) Using the second-quantized representation of Hel−el (with vq given by (11)), show that
its q = 0 term evaluates to

1

2

e2

ε0µ2

N2 −N
Ω

. (12)

Show from this that the interaction Hamiltonian for the Coulomb case reduces to

HI =
1

2Ω

∑
q 6=0

∑
k,σ

∑
k′,σ′

e2

ε0q2
c†k+q,σc

†
k′−q,σ′ck′,σ′ck,σ. (13)

(You will need to argue that the second term in (12) can be omitted in the proper limit (first
Ω→∞, then µ→ 0) because it gives a vanishing contribution to the energy per particle.)

1In this problem we will for simplicity neglect issues related to modifications of the Coulomb interaction in
the presence of periodic boundary conditions. These issues will in any case disappear in the thermodynamic
limit Ω→∞, which is the limit we are interested in here.
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