TFY4210, Quantum theory of many-particle systems, 2016:
Solution to tutorial 3

1. Second-quantized form of some single-particle operators.

(a) The total momentum operator P is a single-particle operator and thus its second-
quantized representation is
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With « = (r, s) and § = (k, o) the eigenfunctions in (1) are of the form ¢g(z) = ¢r, (T, ) =
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Putting this back into (1) gives
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(b) The first-quantized form of the total spin operator is S = Zjvzl s;. As this is a single-
particle operator, its second-quantized form is
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where {|@)} is some chosen single-particle basis. We can write |i) = |u) ® |o) where here
lo) = | £1) is a basis state for the spin degree of freedom and |u) is a basis state for
the degrees of freedom not related to spin (for concreteness we assume that the quantum
numbers p are discrete). As the spin operator 7 only acts on the spin state, we have
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which gives
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or, componentwise,
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Here we used that the matrix elements of the Pauli matrices are defined as 77_, = (o|77|0"),
i.e. the Pauli matrices are a matrix representation of the spin-1/2 spin operator components
(divided by A/2) in the basis of eigenstates of the z-component of the spin operator. (The
matrix representation of an operator O in a basis {|a)} is given by a matrix O with matrix
elements Oy, = (a|OJb).) Writing out the Pauli matrix components explicitly gives the
expression shown in the problem text. For example, for SY we get
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2. Cancellation of the g = 0 term in the jellium model of interacting electrons.
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For finite u the last integral has a finite value in the limit {2 — oo we are interested in.
To evaluate this we change the integration variable from = to R = r — ' (as we consider
1 — oo the integration limits are not affected). The first integral (over r’) simply becomes
Q. Altogether, this gives
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Inserting p, (r) = N/ gives
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(The factor 47 came from the angular integration. We introduced a new integration variable
r = pR and used integration by parts to evaluate the resulting integral.) Similarly,
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(b) Choosing the z axis to point along g, we have
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(c¢) The second-quantized representation of He ), using the p-generalized Coulomb interac-
tion, is
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Its g = 0 part is
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Using [fgror, CLU] = 6k,k’5aa’c;£,g this can be rewritten
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where we used that the total number operator N = Y koo Tkeo

We always here consider many-particle states |U(N)) that are eigenstates of N. Thus, since
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we can effectively treat Hglz_zl as a c-number, with the operator N replaced by the eigenvalue
N, ie.
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Note that the contribution of the second term on the rhs to the energy per particle is
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which goes to zero in the proper limit (first 2 — oo, then y — 0). For this reason we will
omit the second term in (19). On the other hand, the first term in (19) cancels Hy,_1,+ He_p.
This gives,
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where in the last line we have taken the limit ;1 — 0 describing the Coulomb interaction (the
limit €2 — oo, which should be taken first, has been left implicit).



