
TFY4210, Quantum theory of many-particle systems, 2016:
Solution to tutorial 3

1. Second-quantized form of some single-particle operators.

(a) The total momentum operator P is a single-particle operator and thus its second-
quantized representation is

P =
∑
α,β

[∫
dx φ∗α(x)

~
i
∇φβ(x)

]
c†αcβ. (1)

With x = (r, s) and β = (k, σ) the eigenfunctions in (1) are of the form φβ(x) = φkσ(r, s) =
(1/
√

Ω)eik·rδsσ. Thus∫
dx φ∗α(x)

~
i
∇φβ(x) =

∑
s

∫
Ω

d3r

(
1√
Ω
e−ik

′·rδsσ′

)
~
i
∇
(

1√
Ω
eik·rδsσ

)
(2)

=
∑
s

∫
Ω

d3r

(
1√
Ω
e−ik

′·rδsσ′

)
~
i
ik

(
1√
Ω
eik·rδsσ

)

= ~k
(

1

Ω

∫
d3r ei(k−k

′)·r
) (∑

s

δsσ′δsσ

)
= ~k δkk′δσσ′ . (3)

Putting this back into (1) gives

P =
∑
kσ

~k c†kσckσ. (4)

(b) The first-quantized form of the total spin operator is S =
∑N

j=1 sj. As this is a single-
particle operator, its second-quantized form is

S =
∑
µ̃µ̃′

〈µ̃|s|µ̃′〉c†µ̃cµ̃′ =
~
2

∑
µ̃µ̃′

〈µ̃|τ |µ̃′〉c†µ̃cµ̃′ , (5)

where {|µ̃〉} is some chosen single-particle basis. We can write |µ̃〉 = |µ〉 ⊗ |σ〉 where here
|σ〉 = | ± 1

2
〉 is a basis state for the spin degree of freedom and |µ〉 is a basis state for

the degrees of freedom not related to spin (for concreteness we assume that the quantum
numbers µ are discrete). As the spin operator τ only acts on the spin state, we have

〈µ̃|τ |µ̃′〉 = 〈µ|µ′〉〈σ|τ |σ′〉 = δµµ′〈σ|τ |σ′〉 (6)

which gives

S =
~
2

∑
µ

∑
σ,σ′

〈σ|τ |σ′〉c†µσcµσ′ =
~
2

∑
µ

∑
σ,σ′

τσσ′c
†
µσcµσ′ , (7)
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or, componentwise,

Sj =
~
2

∑
µ

∑
σ,σ′

τ jσσ′c
†
µσcµσ′ . (8)

Here we used that the matrix elements of the Pauli matrices are defined as τ jσσ′ = 〈σ|τ j|σ′〉,
i.e. the Pauli matrices are a matrix representation of the spin-1/2 spin operator components
(divided by ~/2) in the basis of eigenstates of the z-component of the spin operator. (The
matrix representation of an operator Ô in a basis {|a〉} is given by a matrix O with matrix
elements Oab = 〈a|Ô|b〉.) Writing out the Pauli matrix components explicitly gives the
expression shown in the problem text. For example, for Sy we get

Sy =
~
2

∑
µ

∑
σ,σ′

τ yσσ′c
†
µσcµσ′

=
~
2

∑
µ

(τ y↑↑c
†
µ↑cµ↑ + τ y↑↓c

†
µ↑cµ↓ + τ y↓↑c

†
µ↓cµ↑ + τ y↓↓c

†
µ↓cµ↓)

=
~
2

∑
µ

(0 · c†µ↑cµ↑ + (−i) · c†µ↑cµ↓ + i · c†µ↓cµ↑ + 0 · c†µ↓cµ↓)

=
~
2

∑
µ

i(c†µ↓cµ↑ − c
†
µ↑cµ↓). (9)

2. Cancellation of the q = 0 term in the jellium model of interacting electrons.

Inserting ρ+(r) = N/Ω gives

Hb−b =
1

2

e2

4πε0

(
N

Ω

)2 ∫
d3r′

∫
d3r

e−µ|r−r
′|

|r − r′|
. (10)

For finite µ the last integral has a finite value in the limit Ω → ∞ we are interested in.
To evaluate this we change the integration variable from r to R = r − r′ (as we consider
Ω→∞ the integration limits are not affected). The first integral (over r′) simply becomes
Ω. Altogether, this gives

Hb−b =
1

2

e2

4πε0

N2

Ω

∫
d3R

e−µ|R|

|R|
=

1

2

e2

4πε0

N2

Ω
· 4π ·

∫ ∞
0

dR R2 e
−µR

R

=
1

2

e2

ε0

N2

Ω
· 1

µ2

∫ ∞
0

dx x e−x︸ ︷︷ ︸
1

=
1

2

e2

ε0µ2

N2

Ω
. (11)

(The factor 4π came from the angular integration. We introduced a new integration variable
x = µR and used integration by parts to evaluate the resulting integral.) Similarly,

Hel−b = − e2

4πε0

N

Ω

∑
i

∫
d3r

e−µ|r−ri|

|r − ri|

= − e2

4πε0

N

Ω
·N
∫
d3R

e−µ|R|

|R|︸ ︷︷ ︸
4π/µ2

= − e2

ε0µ2

N2

Ω
. (12)
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Therefore

Hb−b +Hel−b = −1

2

e2

ε0µ2

N2

Ω
. (13)

(b) Choosing the z axis to point along q, we have

vq =

∫
d3r v(r)e−iq·r =

e2

4πε0

∫
d3r

e−µ|r|−iq·r

|r|

=
e2

4πε0

∫ 2π

0

dφ

∫ ∞
0

dr r e−µr
∫ 1

−1

d(cos θ)e−iqr cos θ︸ ︷︷ ︸
1
iqr

(eiqr−e−iqr)

=
e2

2iq2ε0

∫ ∞
0

dx
[
e(−α+i)x − e(−α−i)x]︸ ︷︷ ︸

2i/(1+α2)

(α ≡ µ/q)

=
e2

ε0(q2 + µ2)
. (14)

(c) The second-quantized representation of Hel−el, using the µ-generalized Coulomb interac-
tion, is

Hel−el =
1

2Ω

∑
q

∑
k,σ

∑
k′,σ′

e2

ε0(q2 + µ2)
c†k+q,σc

†
k′−q,σ′ck′,σ′ck,σ. (15)

Its q = 0 part is
1

2Ω

∑
k,σ

∑
k′,σ′

e2

ε0µ2
c†k,σ c

†
k′,σ′ck′,σ′︸ ︷︷ ︸
n̂k′,σ′

ck,σ ≡ Hq=0
el−el. (16)

Using [n̂k′σ′ , c
†
kσ] = δk,k′δσσ′c

†
kσ this can be rewritten

Hq=0
el−el =

e2

2Ωε0µ2

∑
k,σ

∑
k′,σ′

(n̂k′,σ′c
†
kσ − δk,k′δσσ′c

†
kσ)ckσ

=
e2

2Ωε0µ2

∑
k,σ

∑
k′,σ′

(n̂k′,σ′n̂kσ − δk,k′δσσ′n̂kσ)

=
e2

2Ωε0µ2
(N̂2 − N̂) (17)

where we used that the total number operator N̂ =
∑

k,σ n̂kσ.

We always here consider many-particle states |Ψ(N)〉 that are eigenstates of N̂ . Thus, since

Hq=0
el−el|Ψ(N)〉 =

e2

2Ωε0µ2
(N2 −N)|Ψ(N)〉 (18)

we can effectively treat Hq=0
el−el as a c-number, with the operator N̂ replaced by the eigenvalue

N , i.e.

Hq=0
el−el =

1

2

e2

ε0µ2

(
N2

Ω
− N

Ω

)
. (19)
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Note that the contribution of the second term on the rhs to the energy per particle is

−1

2

e2

ε0µ2Ω
(20)

which goes to zero in the proper limit (first Ω → ∞, then µ → 0). For this reason we will
omit the second term in (19). On the other hand, the first term in (19) cancels Hb−b +Hel−b.
This gives,

HI = Hel−el +Hb−b +Hel−b = Hq 6=0
el−el

=
1

2Ω

∑
q 6=0

∑
k,σ

∑
k′,σ′

e2

ε0(q2 + µ2)
c†k+q,σc

†
k′−q,σ′ck′,σ′ck,σ

→ 1

2Ω

∑
q 6=0

∑
k,σ

∑
k′,σ′

e2

ε0q2
c†k+q,σc

†
k′−q,σ′ck′,σ′ck,σ (21)

where in the last line we have taken the limit µ→ 0 describing the Coulomb interaction (the
limit Ω→∞, which should be taken first, has been left implicit).
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