
TFY4210, Quantum theory of many-particle systems, 2016:
Solution to tutorial 4

1. Band dispersion and hopping matrix element in the “tight-binding” description.

(a) Multiplying with χ∗n(r) from the left and integrating over r gives∫
d3r χ∗n(r)(ha + ∆u(r))φk(r) = ε(k)

∫
d3r χ∗n(r)φk(r). (1)

Now act with ha on χ∗n(r) to its left.1 Since ha is hermitian, the eigenvalue εn is real, so this
gives ∫

d3r χ∗n(r)(εn + ∆u(r))φk(r) = ε(k)

∫
d3r χ∗n(r)φk(r). (2)

Rearranging now gives the desired result.

(b) We can rewrite φk(r) as

φk(r) = eik·r
∑
R

e−ik·(r−R)g(r −R) ≡ eik·rvk(r). (3)

We have

vk(r + R) =
∑
R′

e−ik·(r+R−R′)g(r + R−R′)

=
∑
R′′

e−ik·(r−R
′′)g(r −R′′) =

∑
R′

e−ik·(r−R
′)g(r −R′) = vk(r). (4)

In these expressions R′ runs over the set of lattice vectors in the system and we introduced
R′′ = R′ −R. Because of the periodic boundary conditions, the sums over R′′ and R′ in
the last line are identical as the shift by R in the summation variable merely shuffles the
terms in the sum.

(c) The result follows by inserting φk(r) =
∑

R e
ik·Rg(r −R) ≈

∑
R e

ik·Rcnχn(r −R) into
that equation for ε(k) which has the same same label n, cancelling the common factor cn on
the rhs and lhs, and solving for ε(k).

1I.e. we are using the definition of the adjoint,∫
d3r Φ∗1ÔΦ2 =

∫
d3r (Ô†Φ1)∗Φ2,

where in the second expression, as indicated by the parentheses, Ô† acts only on Φ1.
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(d) We have

tn,RR′ =
1

N

∑
k

eik·(R−R
′)εn(k)

=
1

N

∑
k

eik·(R−R
′)

[
εn +

∑
R′′

eik·R
′′
fn(R′′)

]
(5)

where fn(R) =
∫
d3r χ∗n(r)∆u(r)χn(r −R). Doing the k summations using 1

N

∑
k e

ik·R =
δR,0 gives

tn,RR′ = εnδR,R′ +
∑
R′′

fn(R′′)δR′′,R′−R = εnδR,R′ + fn(R′ −R)

= εnδR,R′ +

∫
d3r χ∗n(r)∆u(r)χn(r − (R′ −R)). (6)

The contribution to the tight-binding Hamiltonian H0 from terms with R = R′ is∑
n

∑
R,R′

∑
σ

ε̃nδR,R′c†nRσcnR′σ =
∑
n

ε̃n
∑
R

∑
σ

c†nRσcnRσ =
∑
n

ε̃nN̂n (7)

where ε̃n = εn +
∫
d3r χ∗n(r)∆u(r)χn(r) and N̂n =

∑
R

∑
σ c
†
nRσcnRσ is the total number

operator for electrons in band n. Unless the total Hamiltonian of the problem contains any
terms causing inter-band transitions,

∑
n ε̃nN̂n can be replaced by a constant (i.e. N̂n is

replaced by the eigenvalue Nn, whose value is the constant total number of electrons in band
n) which in turn can be neglected as it only gives a constant shift of the energy of the system.
This gives

H0 =
∑
n

∑
R 6=R′

∑
σ

tnRR′c†nRσcnR′σ (8)

which describes electrons hopping between different sites on a lattice. Thus H0 can be in-
terpreted as the kinetic energy operator for the electrons on the lattice. But note that the
parameters tnRR′ in H0 arise from the contribution ∆u(r) to the potential energy (Coulomb
interaction energy) between the electrons and the lattice ions.

2. Electrons on a square lattice.

(a) We introduce Fourier transformed operators ckσ by writing

cjσ =
1√
N

∑
k

eik·rjckσ (9)

where rj is the position vector for site j (the vector going from the origin to site j). Here
periodic boundary conditions are imposed in both the x and y direction, giving

kx =
2πnx
Lx

, ky =
2πny
Ly

(10)
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where nx, ny are integers and where Lx = Nxa and Ly = Nya are the lengths of the system
in the x and y directions, with Nx (Ny) being the number of sites in the x (y) direction
(so N = NxNy) and a being the lattice constant. In the following, let us measure distances
in units of the lattice constant, so that we set a = 1. Then the wavevectors k become
dimensionless. By choosing nx = −Nx/2, . . . , Nx/2− 1 and ny = −Ny/2, . . . , Ny/2− 1, the
N k-vectors lie inside the 1st Brillouin zone (1BZ) of the square lattice, which is a square
in k-space centered at k = 0, with sides of length 2π parallel to the x and y axes.

Inserting (9) into Ĥ gives

Ĥ = −t
∑
j,σ

∑
δ̂=x̂,ŷ

(c†j,σcj+δ̂,σ + h.c.)

= −t
∑
j,σ

∑
δ̂=x̂,ŷ

1

N

∑
k,k′

e−ik·rjeik
′·(rj+δ̂)c†kσck′σ + h.c.

= −t
∑
σ

∑
δ̂=x̂,ŷ

∑
k,k′

c†kσck′σe
ik′·δ̂ 1

N

∑
j

e−i(k−k
′)·rj

︸ ︷︷ ︸
δkk′

+h.c.

= −t
∑
kσ

∑
δ̂=x̂,ŷ

c†kσckσe
ik·δ̂ + h.c.

= −t
∑
kσ

∑
δ̂=x̂,ŷ

c†kσckσ(eik·δ̂ + e−ik·δ̂)

= −2t
∑
kσ

∑
δ̂=x̂,ŷ

cos(k · δ̂)c†kσckσ

= −2t
∑
kσ

(cos kx + cos ky)c
†
kσckσ

≡
∑
kσ

εkc
†
kσckσ (11)

with
εk = −2t(cos kx + cos ky). (12)

(b) Since Ĥ is diagonal in the (kσ) single-particle basis, the ground state for a given particle
number Ne is obtained by filling the Ne single-particle states with lowest energy, with the
restriction (from the Pauli principle) that each (kσ) can accommodate no more than 1
fermion. The energy εk of a (kσ) state only depends on k, with the lowest-energy state
at k = 0. By plotting a contour plot of εk (i.e. a plot of constant-energy lines εk = c in
k-space, for various choices of c, see Fig. 1) one can convince oneself that the k-states filled
in the ground state make up a single connected region in the 1BZ (i.e. there are no “holes”
of unfilled k-states in the interior of this region). The Fermi “surface” is the boundary of
this region of filled k-states, such that all the k-states on the Fermi surface have the same
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Figure 1: Contour plot of εk in the 1st Brillouin zone.

energy εF (the Fermi energy). Thus the total number of electrons Ne can be expressed as

Ne = 2
∑

k
εk≤εF

1 (13)

where the factor 2 comes about because each occupied k has 2 electrons (one with spin up
and one with spin down). In the thermodynamic limit we rewrite the sum as an integral as
explained in the lectures, giving

Ne = 2
Nx

2π

Ny

2π

∫
εk≤εF

dkxdky. (14)

Here the integral is AFS, the k-space area enclosed by the Fermi surface. Dividing by
N = NxNy we get that the density n = Ne/N is given by

n =
2

(2π)2
AFS =

AFS

2π2
. (15)

Thus the proportionality constant is 1/(2π2). Note that if we had not set the lattice constant
a to 1, the quantity AFS would have had dimension (length)−2, and there would have been
an additional factor a2 in the proportionality constant.

(c) Note that the area of the 1BZ, denoted A1BZ, is (2π)2. Thus Eq. (15) can be written

AFS

A1BZ

=
n

2
. (16)

(i) n � 1. Using Eq. (16) this corresponds to AFS � A1BZ. Thus only k-states close to
k = 0 are filled. As seen from Fig. 1, in the vicinity of k = 0 the equal-energy contours are
approximately circular. Thus in this case the Fermi surface is approximately circular.
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(ii) n = 1. This corresponds to AFS = A1BZ/2. From Fig. 1 one sees that the area inside
the inscribed square (which is rotated by 45 degrees wrt the 1BZ) is exactly half the area of
the Brillouin zone. Thus this square is the Fermi surface for n = 1.

(iii) n = 2. This corresponds to AFS = A1BZ. So all k-states in the 1BZ are occupied. To
understand what the Fermi surface looks like, it is helpful first to look at the case when n is
a little less than 2, so that nearly all k-states are occupied. From Fig. 1 one sees that the
unoccupied states lie in the 4 corner regions of the 1BZ, where the equal-energy contours
are approximately circular. Thus the Fermi surface consists of 4 quarter-circles, each one
centered around a corner of the 1BZ. As n → 2 the radius of these quarter-circles shrinks
to 0. Thus for n = 2 the Fermi surface consists of the 4 corner points of the 1BZ. (Note,
however, that these 4 corner k-points are actually all equivalent, as they differ from each
other by reciprocal lattice vectors.)

The Fermi surfaces for the cases (i), (ii), and (iii) are shown in red in Fig. 2 (the case of n
a little less than 2 is also shown). The Fermi sea of occupied k-vectors in the ground state
is the grey region enclosed by the Fermi surface, its area being given by (16).

Figure 2: Fermi surface (red curve) and Fermi sea (grey region) for n� 1 (upper left), n = 1
(upper right), n a little less than 2 (lower left), and n = 2 (lower right).
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