
TFY4210, Quantum theory of many-particle systems, 2016:
Solution to tutorial 7

1. Bogoliubov transformation for bosons.

(a) Calculate [a1, a
†
1] = 1:

1 = [a1, a
†
1] = [ub1 − vb†2, ub

†
1 − vb2] = u2 [b1, b

†
1]︸ ︷︷ ︸

1

+v2 [b†2, b2]︸ ︷︷ ︸
−1

= u2 − v2. (1)

(b) We have

a†1a1 = (ub†1 − vb2)(ub1 − vb†2)

= u2b†1b1 + v2 b2b
†
2︸︷︷︸

b†2b2+1

−uv b†1b
†
2 − uv b2b1

= u2b†1b1 + v2b†2b2 − uv(b1b2 + h.c.) + v2. (2)

By the symmetry in the definitions, the result for a†2a2 is obtained by letting 1 ↔ 2 in the
final expression:

a†2a2 = u2b†2b2 + v2b†1b1 − uv(b1b2 + h.c.) + v2. (3)

Thus
ε(a†1a1 + a†2a2) = ε(u2 + v2)(b†1b1 + b†2b2)− 2εuv(b1b2 + h.c.) + 2εv2. (4)

Furthermore,

a1a2 = (ub1 − vb†2)(ub2 − vb†1)

= u2b1b2 + v2b†2b
†
1 − uv( b1b

†
1︸︷︷︸

b†1b1+1

+b†2b2)

= u2b1b2 + v2b†2b
†
1 − uv(b†1b1 + b†2b2)− uv. (5)

Thus
∆(a1a2 + h.c.) = ∆(u2 + v2)(b1b2 + h.c.)− 2∆uv(b†1b1 + b†2b2)− 2∆uv. (6)

This gives

H = ε(a†1a1 + a†2a2) + ∆(a1a2 + h.c.)

= [ε(u2 + v2)−∆ · 2uv](b†1b1 + b†2b2)

+ [∆(u2 + v2)− ε · 2uv](b1b2 + h.c.)

+ (ε · 2v2 −∆ · 2uv). (7)

This expression is diagonal in b-bosons provided that the coefficient of (b1b2 + h.c.) vanishes,
i.e.

∆(u2 + v2) = ε · 2uv. (8)
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With u = cosh η, v = sinh η this condition becomes

∆ cosh 2η = ε sinh 2η, (9)

i.e.

tanh 2η =
∆

ε
. (10)

With this choice of η, H becomes

H = F (b†1b1 + b†2b2) +G (11)

with

F = ε(u2 + v2)−∆ · 2uv, (12)

G = ε · 2v2 −∆ · 2uv. (13)

It remains to simplify the expressions for F and G so that they are given in terms of the
model parameters ε and ∆ only. First consider

F = ε cosh 2η −∆ sinh 2η = cosh 2η (ε−∆ tanh 2η)

= cosh 2η (ε−∆ · ∆

ε
) =

cosh 2η

ε
(ε2 −∆2) (14)

Using the hyperbolic identity cosh2 x = (1− tanh2 x)−1 we have

cosh2 2η =
1

1− tanh2 2η
=

1

1−
(

∆
ε

)2 =
ε2

ε2 −∆2
. (15)

Thus
cosh 2η =

ε√
ε2 −∆2

(16)

(only the positive root exists since the cosh function is positive for all arguments). Inserting
this into (14) gives

F =
√
ε2 −∆2. (17)

Next, we have

G = ε(v2 + v2)−∆ · 2uv = ε(u2 + v2 − 1)−∆ · 2uv
= ε(u2 + v2)−∆ · 2uv − ε = F − ε, (18)

i.e.
G =

√
ε2 −∆2 − ε. (19)

(c) Since Eq. (11) expresses H as a linear combination of the number operators for b1-
bosons and b2-bosons, the eigenstates of H contain definite numbers of these bosons and can
be labeled by these two numbers, which are both nonnegative integers. Thus let us write
the eigenstates as |nb1 , nb2〉 where nb1 is the number of b1-bosons and nb2 is the number of
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b2-bosons. The associated energy eigenvalue of H is F (nb1 + nb2) +G ≡ E(nb1 , nb2).

Since ε and ∆ are positive with ε > ∆ it follows that F > 0. Thus the lowest energy is
obtained for nb1 = nb2 = 0, corresponding to the eigenstate |nb1 = 0, nb2 = 0〉 ≡ |Ψ0〉, which
is therefore the ground state of H. Since there are no b1 or b2-bosons in |Ψ0〉, acting on |Ψ0〉
with the annihilation operator b1 or the annihilation operator b2 will give 0:

bi|Ψ0〉 = 0, (i = 1, 2). (20)

Another way of saying this is that |Ψ0〉 is the vacuum state of the b-bosons. The ground
state energy is E(nb1 = 0, nb2 = 0) = G =

√
ε2 −∆2 − ε.

(d) The first excited states have one b-boson, either of the b1-type or of the b2-type (both
cost the same energy F to create). Thus the first excited states are |nb1 = 1, nb2 = 0〉 and
|nb1 = 0, nb2 = 1〉 and their energy is E(nb1 = 1, nb2 = 0) = E(nb1 = 0, nb2 = 1) = F +G.1

(e) We have

a1 = ub1 − vb†2 ⇒ ua1 = u2b1 − uvb†2, (21)

a†2 = ub†2 − vb1 ⇒ va†2 = uvb†2 − v2b1. (22)

Adding the two rightmost equations, the coefficients of b†2 cancel, while the total coefficient
of b1 is seen to be u2 − v2, which equals 1. Thus

b1 = ua1 + va†2. (23)

(f) We want to show that the given expression for |Ψ0〉 satisfies

b1|Ψ0〉 = 0. (24)

Define λ = tanh η and insert the expressions for b1 and |Ψ0〉 in terms of a-bosons. This gives

b|Ψ0〉 ∝ (ua1 + va†2) exp(−λa†1a
†
2)|0〉. (25)

Let us try to move a1 past the exponential so that we can use2 a1|0〉 = 0 to simplify things.
However, note that a1 does not commute with the argument of the exponential. We can
however write

a1 exp(−λa†1a
†
2)|0〉 = exp(−λa†1a

†
2) exp(λa†1a

†
2)︸ ︷︷ ︸

I

a1 exp(−λa†1a
†
2)|0〉

= exp(−λa†1a
†
2) exp(λa†1a

†
2)a1 exp(−λa†1a

†
2)︸ ︷︷ ︸

use Baker-Hausdorff formula to calculate

|0〉 (26)

1As a check of the correctness of the results in (c) and (d) for the energy of the ground state and the first
excited states, note that for ∆ = 0 these energies reduce to 0 and ε, respectively, which agrees with what
one finds from the defining expression for H when ∆ = 0 (the energies can then be deduced from direct
inspection of this expression, as a Bogoliubov transformation is then unnecessary since in the absence of the
∆-term H is in diagonal form from the outset).

2Note that we have defined the state denoted |0〉 as the vacuum of the a-bosons while |Ψ0〉 is the vacuum
of the b-bosons. Do not confuse these two vacuum states!
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The first term on the rhs of the Baker-Hausdorff formula is just a1. The second term is the
commutator

[a1,−λa†1a
†
2] = −λa†2[a1, a

†
1] = −λa†2. (27)

Since this expression commutes with −λa†1a
†
2, all higher order terms in the Baker-Hausdorff

expansion vanish. Thus

exp(λa†1a
†
2)a1 exp(−λa†1a

†
2) = a1−λa†2 ⇒ a1 exp(−λa†1a

†
2) = exp(−λa†1a

†
2)(a1−λa†2). (28)

Also using that a†2 exp(−λa†1a
†
2) = exp(−λa†1a

†
2)a†2 (which follows since a†2 commutes with the

argument of the exponential) we get

(ua1 + va†2) exp(−λa†1a
†
2)|0〉 = ua1 exp(−λa†1a

†
2)|0〉+ va†2 exp(−λa†1a

†
2)|0〉

= exp(−λa†1a
†
2)
[
u(a1 − λa†2) + va†2

]
|0〉

= exp(−λa†1a
†
2)[−uλ+ v]a†2|0〉

= 0 (29)

which concludes the proof. Here we used a1|0〉 = 0 (to get the penultimate line) before using

−uλ+ v = − cosh η tanh η + sinh η = 0. (30)

2. Ferromagnetic Heisenberg model with a spin anisotropy revisited.

For D ≥ 0 we found ∆ = 2SD (for details, see the solution to tutorial 6).

For D = 0, ∆ = 0. This means that we have gapless magnons in this case (ωk → 0 as k→ 0).
Note that for D = 0 the Hamiltonian H reduces to the Heisenberg model HHeis which is
invariant under identical rotations of all spins around an arbitrary axis by an arbitrary an-
gle, which is a continuous symmetry. As the ground states break this continuous symmetry,
Goldstone’s theorem is applicable and thus predicts the existence of gapless magnons. So
our result ∆ = 0 for D = 0 is also predicted by the Goldstone theorem.

For D > 0, ∆ > 0. Thus the magnons are gapped. In this case the continuous symmetry
of H is restricted to rotations by an arbitrary angle around the z axis only, as the term HD

is not invariant under arbitrary rotations around other axes. In this case there are only two
ground states, one with spins ordering along the +z direction and the other with spins order-
ing along the −z direction, and these ground states are invariant under arbitrary rotations
around the z axis. Hence this continuous symmetry is not broken by the ground states in
this case. (The ground states merely break the discrete symmetry of H given by the trans-
formation Szi → −Szi , S+

i ↔ S−i for all i.) Therefore Goldstone’s theorem is not applicable
in this case, and so the absence of gapless magnons is not a contradiction of Goldstone’s
theorem.
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3. The total Sz operator for the antiferromagnetic Heisenberg model.

(a) We have

Sz =
∑
j

Szj =
∑
j∈A

Szj +
∑
j∈B

Szj =
∑
j∈A

(S − a†jaj) +
∑
j∈B

(−S + b†jbj)

=
∑
j∈B

b†jbj −
∑
j∈A

a†jaj. (31)

Fourier transforming to operators bk,

bj =
1√
N/2

∑
k

eik·rjbk (32)

where N/2 is the number of sites on the B (and A) sublattice and the sum goes over the
magnetic Brillouin zone, gives∑

j∈B

b†jbj =
∑
k,k′

b†kbk′
2

N

∑
j∈B

e−i(k−k
′)·rj

︸ ︷︷ ︸
δk,k′

=
∑
k

b†kbk (33)

and similarly,
∑

j∈A a
†
jaj =

∑
k a
†
kak, thus giving

Sz =
∑
k

(b†kbk − a
†
kak). (34)

Now introduce the Bogoliubov transformation to α and β operators:

ak = ukαk + vkβ
†
−k, (35)

bk = ukβk + vkα
†
−k. (36)

This gives (using also the bosonic commutation relations and that the coefficient functions
uk and vk are real)

Sz =
∑
k

[(ukβ
†
k + vkα−k)(ukβk + vkα

†
−k)− (ukα

†
k + vkβ−k)(ukαk + vkβ

†
−k)]

=
∑
k

[u2
kβ
†
kβk − v

2
k(β†−kβ−k + 1)− u2

kα
†
kαk + v2

k(α†−kα−k + 1)

+ ukvk(α−kβk − αkβ−k + h.c.)] (37)

Let us change summation variable from k to −k in the first term on the last line (if you
prefer, first define k′ = −k, rewrite the sum as a sum over k′ (which goes over exactly the
same set of wavevectors as the sum over k since the magnetic Brillouin zone has inversion
symmetry about the origin) and then rename k′ as k) and use u−k = uk, v−k = vk. After
doing the sum the first and second term on the last line then cancel, and thus the contribution
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from the h.c. on the same line also vanishes. Furthermore, we use u2
k − v2

k = 1 to simplify
the first line, giving

Sz =
∑
k

[β†kβk − α
†
kαk]. (38)

(b) The Hamiltonian can be written as a sum of N independent harmonic oscillator Hamilto-
nians (for each of the N/2 k-vectors in the magnetic Brillouin zone there are two oscillators,
one of α type and one of β type):

H = E0 +
∑
k

ωk[α†kαk + β†kβk] ≡ E0 +
∑
k

ωk[n̂αk
+ n̂βk ] (39)

where n̂αk
= α†kαk and n̂βk = β†kβk are the respective number operators. The eigenstates

|Ψ〉 of H are therefore eigenstates of these number operators and can be written

|Ψ({nαk
, nβk})〉 ∝

∏
k

[
(α†k)nαk (β†k)nβk

]
|G〉 (40)

where the product goes over all wavevectors in the magnetic Brillouin zone, nαk
and nβk

denote the number of magnons in the various oscillators, and |G〉 is the vacuum state of the
α- and β-bosons and thus also the ground state of H (the use of ∝ instead of an equality sign
is due to the omission of normalization factors; for these, see e.g. the discussion of second
quantization for bosons in Sec. 2.2 in the lecture notes on second quantization).

As Eq. (38) expresses Sz entirely in terms of the above-mentioned number operators, the
eigenstates of H are also eigenstates of Sz. The associated eigenvalues are

∑
k(nβk − nαk

),
as seen by acting with Sz on |Ψ〉:

Sz|Ψ〉 =
∑
k

(n̂βk − n̂αk
)|Ψ〉 =

∑
k

(nβk − nαk
)|Ψ〉. (41)
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