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Problem 5
(a) The potential is, for |r| > R,

1 q q
V(r) = . 1
(") = Treo |P—az] T o0 (1)

The boundary condition (BC) is V(r) = 0 for all » with |r| = R. To find the two unknowns ¢’ and b,
we can consider the BC for two special cases, say » = £=R2. This gives

5 q q / R—b
orr=thz R—a TR T=" R @)
. q q , R+b
for r = —R% : =0 = ¢=- . 3
o * —R—a " [—R_Y T="Riq? ®)

where we used that a > R and b < R. Equating the two expressions for ¢’ gives
2

(R+a)(R—b)=(R+b(a—R) = 2R*=2ab = b=— (4)

Inserting this result for b into one of the equations for ¢’, say Eq. (3), gives

,__R—|—R2/a

R 1+R/a R

Rta 17 4 Rja+1?1” o7 (5)

We should now check whether this solution for ¢’ and b also satisfies the BC’s for the general case
|r| = R (after all, while getting a solution to our set of two linear equations (2)-(3) in two unknowns was
mathematically guaranteed, it is a priori not obvious that we would get the same solution regardless of
which two special points on the spherical surface we selected). To this end, let us write

Ir—cz|=\/(r—c2)-(r—c2) = V2 —2er -2+ = \/r2 — 2rc cosf + 2. (6)
Using this result, the second term inside the square brackets in (1) becomes, for |r| = R,

VR —2R - (R?/a)cosf + (R?/a)? VR?Z —2Racosf + a?’

which is the negative of the first term, confirming the BC for an arbitrary point on the spherical surface.

(b) The surface charge density o is given by
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(8)
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Here ”outside” ("inside”) refer to evaluating the derivatives just outside (inside) the spherical surface.
The ”inside” term vanishes since the sphere is a conductor and thus an equipotential in electrostatics.
Since the surface normal has the same direction as 7, it follows that 9/0n = 9/0r. Thus

!
. — 15‘{ q n q H

outside

C4AmOr | V2 —2ra cosf+ a2 | /rZ—2rb cos O + b2 .
1 q(R —acos?) ¢ (R —bcosb)
~ 4meo | (R? —2Racos® + a?)3/2  (R2 — 2Rbcos 6 + b2)3/2
q R2 _ a2
= (9)

47 R(R? + a2 — 2Racos 0)3/2°

As is reasonable, this expression for ¢ has the opposite sign of ¢ and its magnitude decreases with 6.
Also, its dimension is [charge]/[length]?, as it should be (it is good to make such checks).



The total charge of the entire system (point charge + sphere) is ¢ + Q@ = Q0. Here, Qiot is also the
charge appearing in the monopole term Qio1/4mepr in the multipole expansion of the potential. From
(1) one can see that the monopole term is (¢ + ¢')/4mwepr, so Qo = ¢ + ¢, giving

Q=Qwt—q=(+4q)—q=4. (10)
Alternatively, @ can be found by integrating the surface charge density o over the spherical surface:
27 T 2 2 1
: qR(R? — a®) / dx
= [ oda = R? d df sinf o = 11
Q /U a /0 <p/0 sinf o 3 (B ¥ a® —2Rax)?? (11)

(here the ¢-integral just gave a factor 27 and we changed integration variables from 6 to z = cos#).
The integral is fil dz (C + Dz)~3/? with constants C' = R? — a? and D = —2Ra. Changing integration
variable to u = C + Dz, the integral becomes

C+D
C+D
1 duu=3/? = 1 #uf?’/%l _ 2 { ! - L . (12)
D Jo_p D -3/2+1 e, PWC+D VC-D
Using vVC £ D =VR?+ a2 F2Ra=+/(RFa)? =aF R, we get
qR(R?* —a?) (-2) 1 1 R
- . — =—qg— =¢. 1

@ 2 (=2Ra) |a— R a+R T =1 (13)

2R/(a’—R?)

(c) Call the second image charge ¢”. Since g and ¢’ together make V = 0 at r = R, the job of ¢” is to
raise the potential from 0 to Vp at » = R. Since all points with |r| = R should be raised by the same
value Vj, ¢ must be positioned equally far away from all these points, and therefore it must be placed at
the origin 7 = 0. Its potential at r = R is therefore ¢”/4meqR. This should equal Vj, so ¢” = 4dmweg RVj.
The potential outside the sphere is V(r) = (4meo) ~1(q/|r — a2| + ¢'/|r — b2| + ¢"/|r]).



