
Tight-binding model for electrons in a crystal

Consider a simple crystal, characterized by its atoms being arranged in an ordered way,
such that their equilibrium positions are at the sites of a periodic lattice. In the so-called
tight-binding model, each electron is taken to be in an orbital localized around a particular
atom1 and has a (small) amplitude for tunneling to a different orbital localized around a
nearby atom. For simplicity let us assume that only one orbital per atom is relevant for this
conduction and furthermore that the crystal is one-dimensional (1D).2 Consider therefore
a 1D lattice with N sites.3 Let the operator ĉ†jσ create an electron in the orbital localized
around site j = 1, 2, . . . , N with spin projection σ = ±1/2. We will use periodic boundary
conditions, i.e. ĉj+N,σ = ĉj,σ, which makes the system like a necklace, with the sites being
“beads” evenly spaced along it. Let us consider the following Hamiltonian:

Ĥ = −t
∑
j,σ

(ĉ†j,σ ĉj+1,σ + h.c.) (1)

where “h.c.” means hermitian conjugate, i.e. the adjoint operator. This Hamiltonian is the
kinetic energy operator associated with the electrons hopping between neighbouring sites on
the 1D lattice. To see this, consider an electron with spin σ sitting on site ` and consider
the process of this electron hopping to the site immediately to the right, which has label
` + 1. So in the initial state this electron is on site ` while in the final state it has moved
to site `+ 1. Mathematically, the hopping can be described as a two-step process: First the
electron with spin σ at site ` is annihilated, and then the electron with spin σ at site ` + 1
is created. This is effected by the operator ĉ†`+1,σ ĉ`,σ. Its h.c. describes the hopping of an
electron with spin σ from site ` + 1 to site `. The parameter t > 0 is called the hopping
amplitude.4

We want to find the eigenstates and eigenvalues of Ĥ. To this end, we introduce operators
creating and annihilating electrons in definite k-states5 by writing

ĉjσ =
1√
N

∑
k

eikrj ĉkσ, (2)

1Technically, these orbitals are called Wannier orbitals. They form a complete orthonormal basis.
2For a general and careful discussion of the tight-binding model, see Ch. 10 of Ashcroft and Mermin,

”Solid state physics”, Thomson Learning, 1976.
3Please note that in this section N stands for the number of sites, while in the previous section N was

the number of electrons, which in this section will be called Ne....
4For a more detailed discussion, see Sec. 3.1 in Nagaosa’s ”Quantum field theory in strongly correlated

electronic systems” and Sec. 2.2 in ”Condensed matter field theory” by Altland and Simons (p. 54-55). In
our discussion we will just take t as a given parameter.

5More precisely, the state created (annihilated) by ĉ†kσ (ĉkσ) is called a Bloch state. Its wavevector k is
restricted to the 1st Brillouin zone (see below). It can be shown that the wave function of a Bloch state can
be written as the product of a plane wave (with wave vector k) and a function with the periodicity of the
crystal lattice (this fact is however not needed in the following discussion).

1



where
rj = ja (3)

is the position of site j in the lattice, where a is the distance between neighbouring sites (a
is usually called the lattice constant). The total length of the system is L = Na. Periodic
boundary conditions ĉjσ = ĉj+N,σ imply that eikL = 1, i.e. the allowed wavevectors take the
form k = 2πm/L where m is an integer. Because we have (for each value of σ) N operators
ĉjσ (since j = 1, 2, . . . , N), we also have N independent operators ĉkσ corresponding to
N inequivalent values of k. It is customary to choose these N k-values to be given by
m = −N/2,−N/2 + 1, . . . , N/2−1 (here we assumed that N is an even number). This gives
k = −π/a,−π/a + 2π/L, . . . , π/a − 2π/L, which in the limit N → ∞ means that k lies in
the region [−π/a, π/a〉 which is called the 1st Brillouin zone for the 1D lattice. The inverse
transformation is

ĉkσ =
1√
N

∑
j

e−ikrj ĉjσ. (4)

This can be seen by checking that the transformation and the inverse transformation “undo”
each other, thus taking us back to where we started:

ĉjσ =
1√
N

∑
k

eikjaĉkσ =
1√
N

∑
k

eikja
1√
N

∑
j′

e−ikj
′aĉj′σ

=
∑
j′

ĉj′σ
1

N

∑
k

eik(j−j
′)a

︸ ︷︷ ︸
δjj′ (see Appendix)

=
∑
j′

ĉj′σδjj′ = ĉjσ. (5)

Note that ĉk+2π/a,σ = ĉkσ, which shows that wavevectors that differ by an integer multiple of
2π/a are equivalent to each other. This is of course consistent with our finding above that
we could choose the N inequivalent values of k to all lie inside the 1st Brillouin zone, an
interval of length 2π/a. Using the anticommutation relations for the site-labeled operators,
i.e.

{cjσ, c†j′σ′} = δjj′δσσ′ , {cjσ, cj′σ′} = {c†jσ, c
†
j′σ′} = 0, (6)

one finds that the wavevector-labeled operators satisfy the same kind of canonical anticom-
mutation relations, i.e.

{ckσ, c†k′σ′} = δkk′δσσ′ , {ckσ, ck′σ′} = {c†kσ, c
†
k′σ′} = 0. (7)

Using the transformation (2) the sum
∑

j ĉ
†
jσ ĉj+1,σ appearing in Ĥ becomes∑

j

ĉ†jσ ĉj+1,σ =
1

N

∑
j

∑
k,k′

e−ikjaeik
′(j+1)aĉ†kσ ĉk′σ

=
∑
k,k′

ĉ†k,σ ĉk′σe
ik′a 1

N

∑
j

e−i(k−k
′)ja

︸ ︷︷ ︸
δkk′ (see Appendix)

=
∑
k

eika ĉ†kσ ĉkσ. (8)
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Thus
Ĥ = −t

∑
k,σ

(eika ĉ†kσ ĉkσ + h.c.) = −t
∑
k,σ

(eika + e−ika)ĉ†kσ ĉkσ, (9)

i.e.
Ĥ =

∑
kσ

εkĉ
†
kσ ĉkσ, (10)

where the energy function εk, often called the dispersion relation, is given by

εk = −2t cos ka. (11)

Eq. (10) gives Ĥ as a linear combination of number operators n̂kσ = ĉ†kσ ĉkσ. The eigenstates

and eigenvalues of Ĥ can then be read off easily. An arbitrary eigenstate |A〉 of Ĥ is specified

by giving its occupation numbers n
(A)
k,σ (= 0 or 1) for all the single-particle state (k, σ). The

associated eigenvalue Ea is given by

Ea =
∑
kσ∈A

εk (12)

where the sum runs over those (k, σ) states that are occupied in |A〉 (i.e. have n
(A)
kσ = 1).

Typically we are interested in a system which contains some fixed number of electrons
Ne (note that we must have Ne ≤ 2N due to the Pauli principle). The occupation numbers
nk,σ of an eigenstate with Ne electrons therefore satisfies the constraint∑

k,σ

nk,σ = Ne. (13)

The ground state of such a system is obtained by filling those Ne (k, σ) states that have the
smallest energy εk. Each k-state can be occupied by two electrons, one having σ = +1/2 (spin
↑) and the other having σ = −1/2 (spin ↓). As εk has a minimum at k = 0 and grows
monotonically as k moves away from 0 inside the 1st Brillouin zone, the k-states that will
be filled are the Ne/2 states closest to k = 0, which will enclose a region from k = −kF to
k = +kF where kF is the Fermi wavevector. Thus the ground state can again be written on
the form

∏
|k|<kF ĉ

†
k↑ĉ
†
k↓|0〉, and the relationship between the particle density n and kF can be

worked out in a similar way as for the free electron gas (and so can the relationship between
the ground state energy E0 and kF ).

So far we have considered electrons hopping on a 1D lattice. Of course, electrons hopping
on 2- or 3-dimensional lattices is at least as relevant, and it is straightforward to generalize the
hopping Hamiltonian (1) to such higher-dimensional lattices. In this course we limit ourselves
to ”hypercubic” lattices, i.e. a square lattice in two dimensions and a cubic lattice in three
dimensions. Then the associated 1st Brillouin zone becomes a square in two dimensions and
a cube in three dimensions, centered at the origin in k-space and with sides of length 2π/a
parallel to the axes of the real-space lattice. Note that when discussing lattice problems like
these, one very often chooses to measure distances in units of the lattice spacing a, thus
setting a = 1. Then wavevectors become dimensionless, so the sides of the 1st Brillouin
zone have length 2π (i.e. running from −π to π in each of the D k-space directions for a
D-dimensional lattice).
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A Some frequently encountered k- and j-sums

In these notes we used that ∑
k

eik(j−j
′)a = Nδjj′ , (14)∑

j

e−i(k−k
′)ja = Nδkk′ , (15)

where k = 2πm/L and k′ = 2πm′/L, with m and m′ integers that can take the val-
ues −N/2, . . . , N/2 − 1 such that k and k′ are in the 1st Brillouin zone [−π/a, π/a〉, and
j = 1, 2, . . . N .

Let us prove Eq. (14). If j = j′ the exponential is 1, so the sum is N · 1 = N . If j 6= j′,
consider the summand which is

eik(j−j
′)a = ei

2π
Na

m(j−j′)a ≡ xm, where x ≡ ei2π(j−j
′)/N . (16)

Since both j and j′ can only take values between 1 and N , and we have assumed j 6= j′, we
get 0 < |j − j′| < N , and therefore x 6= 1. We now rewrite the sum as

∑
k

eik(j−j
′)a =

N/2−1∑
m=−N/2

xm = x−N/2
N−1∑
m=0

xm = x−N/2
1− xN

1− x
, (17)

where we used the formula for the sum of a geometric series. Since x 6= 1 the denominator
1−x is nonzero. Furthermore, xN = ei2π(j−j

′) = 1, so 1−xN vanishes. This proves Eq. (14).

The proof of (15) is very similar and is therefore left to the reader.
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